’ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

INtroduCtion ...cceeeeeiieeeeceeee e
Low Cost PackML Template System Architecture .
Mitsubishi PackML Template Key Components.....
Mitsubishi PackML Template Program Structure ..

High Level OEM Implementation Steps.................

A U A W N

Parts of the PackML Implementation Users Guide

Content

¢ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 1-i Custom Solutions Center

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 1-ii Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 1: Overview

1 Introduction

This set of Users Guide documents describes the implementation of Mitsubishi OEM PackML Implementation Templates for
L02 PLC" and steps on how to use the Templates to implement packaging machine control programs by OEM users. Using
this Mitsubishi PackML template package enables OEMs to implement a very low cost packaging machine control programs
that satisfy the OMAC PackML standard and align with the OMAC PackML Implementation Guide with much reduced effort.

The main functions of this Mitsubishi PackML template package are to (1) handle PackML state and mode transitions, and
(2) accumulate machine execution time in each valid mode and state. However, the Mitsubishi PackML templates are NOT
intended to be used without modifications or enhancements with machine control PLC, motion and HMI programs. For
example, different PLC, motion controller, and GOT types that are used in an actual OEM machine will require PLC, motion
controllers, and GOT setup parameters to be adjusted accordingly.

These templates depend on PackML commands and status from PLC, motion and HMI programs to properly perform
machine mode and state transitions at the unit machine level per ISA-88 definition. Thus it is OEM’s responsibility to supply
the proper commands and state status from their machine control programs to the Mitsubishi PackML templates in order
for the PackML machine modes and states to function properly.

The details on how the machine control programs should be integrated in the Mitsubishi PackML templates are described in
this document.

2 Low Cost PackML Template System Architecture

The Low Cost PackML templates are designed to run on a system with an L02 PLC and a GT-11 HMI. The system architecture
used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a L02 PLC and the GOT is a GT-11
with the resolution of 320 x 240.

RS-232

Channel 1

L6ADP-R2

Programming Laptop — — — GT-11 (320x240)
- LO2CPU

Figure 1 — Low Cost Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and GX Works 2 programs to the LO2CPU.

The configurations of these components are described in more details in other parts of the Mitsubishi PackML
Implementation Users Guide.

1
Also referred to as Mitsubishi PackML Templates or PackML Templates, or simply Templates in this document.

0 MITSUBISHI ELECTRIC Part 1-Pagel Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 1: Overview

3 Mitsubishi PackML Template Key Components

The Mitsubishi PackML Template consists of the following key components that an OEM can use directly without
modifications:

1. All PackTags defined and allocated to specific PLC registers
2. PackML_ModeStateManager Function Block
3. PackML_ModeStateTimes Function Block

The PackTags and PackML Core function blocks are developed in GX Works 2 and provided as integral parts of the PackML
Template GX Works 2 program in the iQ Works Workspace.

The description and implementation of PackTags are described in Mitsubishi PackML Implementation Users Guide — Part 3
PackTags Design Document. The core PackML function blocks are described in Mitsubishi PackML Implementation Users
Guide — Part 4 PackML Core Function Block document.

4 Mitsubishi PackML Template Program Structure

The Mitsubishi PackML Template program utilizes the key components described in the above section and are organized
following the OMAC Users Group PackML Implementation Guide and the ISA-88 Make2Pack modular structure as shown in
Figure 2 below. All routines of the PackML template program are developed in GX Works 2.

—1-{825 Parameter
P PLC Parameter
+ & Metwork Parameter
{1 Remote Password
g Intelligent Function Module
!_} Global Device Comment
+- (i Global Label
—I-fig Program Setting
+ E Initial Program
=-{{H] Scan Program
= E‘ﬂ UnitMach
—|-fi8 Unit_Machine
+-{{%) UM_Main
+ ﬁ PackML_Main
+ ﬂ UM_LineComm
=l EMOD
= fis EMOD

+-{{#) EMDO_Main
+-{#} EMO0_CMO1_Routine
+ EMO0_CMO2_Routine
+-{#} EMO0_CMO3_Routine
+-{{%) EMOO_PackML_Cmd_Sum
=gl EMO1
- fied EMO1

+ EMD1_Main
+-{{#) EMD1_CMO1_Routine
+] EMO1_CMO2_Routine
+-{{#) EM01_CMO3_Routine
+-{{#) EMO1_PackML_Cmd_Sum
E Standby Program
E Fixed Scan Program
{{lf}) Mo Execution Type
4% pou

+ Device Memary
Device Initial Value

Figure 2 — Mitsubishi PackML Template Program Structure

In contrast to the Key Components, the Template program structure is intended to be modified to reflect the actual
packaging machine that is being developed. One key objective of the Mitsubishi Template Implementation program is to
demonstrate how a packaging machine program can be laid out and created. It is never intended to be used as is.

0 MITSUBISHI ELECTRIC Part 1 - Page 2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 1: Overview

As shown Figure 2, the Mitsubishi PackML Template program is designed to represent a packaging machine (Referred to as
Unit_Machine) consists of two equipment modules (EM00O and EMO01). Each equipment module consists of four Control
Modules (CMO01 to CM03) for machine operations and a Control Module to integrate appropriate PackML commands and
status for each Equipment Module from its control modules CM01 to CM03. An OEM has the flexibility to add or delete
equipment modules and control modules to match the actual machine that is being built.

5 High Level OEM Implementation Steps

High level steps of tailoring the Mitsubishi PackML Templates to an actual packaging machine are described in this section:
Install the latest version of the Mitsubishi iQ Works on the programming computer.
Establish the RS232 communication among the LO2 PLC and the GOT.

1

2

3. Analyze the Unit Machine design and divide the machine into proper equipment modules.

4. Define and allocate control functions into proper modular code and assign them to various control modules.
5

Follow the Mitsubishi PackML Template program structure and add or subtract equipment and control modules as
appropriate. For example, one may add additional Equipment Modules EM02 and EMO03 (by cutting, pasting, and
modifying the labels and names using one of the existing module in the template) or delete control modules
EMOO0_CMO3 if it is not needed.

a. The routine names such as “EM00_CMO1_Routines” can be modified to “Load_HMI” for example to
better reflect the actual purpose of the module which performs “Load Station Operator interface”
functions.

6. Develop machine PLC code and assign them in proper modules using iQ Works and GX Works 2.
7. Develop the GOT programs using iQ Works and GT Designer 3.
8. Load programs in PLC and the GOT.

6 Parts of the PackML Implementation Users Guide

The Mitsubishi PackML Implementation Users Guide consists of 6 documents:

Documents Descriptions

Part 1 - Overview Overview of the Mitsubishi PackML Template package and program structure

Part 2 — MELSOFT Navigator Descriptions of configuring the PackML Template System using iQ Works MELSOFT

Navigator
Part 3 — PackTags Design details of implementing PackTags in the PackML Templates
Part 4 — PackML Function Blocks Design details and PLC code of the core PackML function blocks

Design details on the structure of the OEM Machine program following the OMAC
Implementation guide and the Make2Pack modularization. Description on the
initialization of PackML states, aggregation of PackML status and commands through
various equipment and control modules, and steps to modify the aggregation of
PackML status and commands when equipment modules and control modules are
added or removed.

Part 5 — Program Structure

Description of GOT sample screens to display PackML current mode and state and

Part 6 — GOT Screens .
also the accumulated time for each mode and state.

0 MITSUBISHI ELECTRIC Part 1-Page 3 Custom Solutions Center
A% AUTOMATION, INC.

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

Content

R 101 o To Vot o] o TSP PR PO PRORO 1
2 MELSOFT Navigator CONFIGUIAtIONccccciiiiiiiiee ettt et e e te s st e e e st e e e e ate e e ssaeeeansteeeassseesnseeeassasesssneesanses rneenn 1
2.1 MOAUIE CONTIGUIALION ittt ettt ettt e sttt e s a bt e s ae e e bt e e bt e s be e e bt e sabe e e b e e sateesanees sbeesabeeenneesates 1
2.2 NetWOrK CONFIGUIATION c..uiiieie ittt ettt ettt st e e s ae e e s bt e e et e s be e e bt e sabeeeabeesabeesaseenns saeesabeeenneesates 3
2.3 Adding Programs tO PLC @nd GOTuuiiiiiiii e cciiiee ettt e e e e ettt e e e e e e e e abeaeeaeeeeeasbaaeeaaaeesaassaaeeaaaesaasssaseeseeesansrenneaaens 3
2.3.1. Creating NEW PLC PrOSram ... ettt ettt e et et e e e e e e e e e eeeeseseeeeesesesesesasasaaaaanees 4
2.3.2. Fi¥o o FT o= o Iy] o= el oY= = SRS 4
2.3.3. FA [oToF: AT g Y o= s o[RS 5
3 Registering Labels in the System Label Databaseccuieieiiiiiiciiie et ceee st e e et e st e e e st e e e e s eae e e e naeeesraeeenns 6
4 Using the System Labels in the GOT PrOSram.......c.co i iiieiiierieesite ettt st e st e st e sb e e sate e sabeesaee e sbeeesseesbeeeseesabeesseenane 8
4.1 Establish ROULE INFOrMAtioNc...eiiiiiieie ettt sttt e st e s beesab e e sabeesaeeesbeeesee seesaneesas 8
4.2 Setting Up SyStem Labels fOr GOT USE......uoii ittt ettt e ettt e eete e e e ettt e e e e te e e eetaaeaesabeeeeensaeseensseeesasseaeeseeseennens 9
4.3 Using the System Labels iN GOT ..ottt ettt e e e e e sttt e e e e e e ettt a e e e e e e sesasbaaeeeeeeesansaaseeaesesnstaseeeeeeennnss een 11
LT YU [1 4 I- [N 16
@ MITSUBISHI ELECTRIC Part 2 - i Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 2 —ii Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

1 Introduction

This document describes the steps of configuring MELSOFT Navigator within the iQ Works software to establish the Low
Cost PackML Template System.

The Low Cost PackML template system consists of a LO2CPU with L6BADP-R2 Serial Module and a GT-11 HMI. The system
architecture used to create the Low Cost Mitsubishi PackML templates is shown in the following block diagram. The PLC is a
LO2CPU and the GOT is a GT-11 with the resolution of 320 x 240.

RS-232

Channel 1

L6ADP-R2

Programming Laptop — — ——— GT-11 (320x240)
- LO2CPU

Figure 1 — Low Cost Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and GX Works 2 programs to the LO2CPU.

2 MELSOFT Navigator Configuration

Using the MELSOFT Navigator of the iQ Works package, one can create an integrated database that allows system labels to
be used harmoniously between the PLC and GOT programs.

2.1 Module Configuration

The first step of creating an integrated project is to define the Module Configuration using the MELSOFT Navigator, as
shown in Figure 2 below:

0 MITSUBISHI ELECTRIC Part 2 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

i Workspace Project Edt View Systemlabellist Onlne Tools Window Help

DA, a6

: Workspace 1 x

=] PackML Warkspace Test
= 7 metwork Configuration
B petyork Configuration
&I No Assignment: Pr Check 3
ik Project List Parameter v
=] E Structured Data T,
BE packMLFE Madule Configuration » Hew
= B System Label List Allocate Praject With The Controler...
i PackML Sys Lal
Eolder »
Export Project. .
i Bird's-eye 1 x

Figure 2 — Creating New Module Configuration

a. When the new Module Configuration workspace is open, one can select the LO2CPU, L6ADP-R2 RS-232
Adaptor, and the L61P Power Supply to form the L02 PLC system as shown in Figure 3.

Figure 3 — L02 PLC System Configuration

b. The PLC Module was configured with the proper Station Number and IP address using “Input Detailed
Configuration Information” screen as shown in Figure 4.

MITSUBISHI ELECTRIC Part 2 - Page 2 Custom Solutions Center
AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

Figure 4 — LO2CPU Module Configuration

2.2 Network Configuration

a. After the Module Configuration is completed, the Module Configuration is automatically reflected in the
Network Configuration workspace. For the Low Cost PackML Template System, a Serial Cable network is
added to the Network Configuration as Network No. 1 as shown in Figure 5.

(1 0]

L Module Configuration

Figure 5 — Initiating PackML Template System Network Configuration

b. From the Module List, one can add a GOT to the system. For the Low Cost PackML Template System, a GT11
with the resolution of 320 x 240 is added to the system and then configured with the proper channel
designation.

[. rgrien | P _Siysten Label 5 b+ Input Detalled Configuration Infarmation 0 x
-~ |JsTI-g

Figure 6 — Low Cost PackML Template System Configuration

c. The “Module Configuration” workspace is now showing the LO2PLC is connected to Network #1 as shown in
Figure 7.

Figure 7 — Low Cost PackML Template System Network Configuration

2.3 Adding Programs to PLC and GOT

Once the Low Cost PackML Template System is configured with proper modules and network connectivity, one can
start to add PLC and GOT programs to the system.

0 MITSUBISHI ELECTRIC Part 2 -Page 3 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

2.3.1. Creating New PLC Program

A new PLC program can be created by double-clicking the CPU module in the Module Configuration workspace
and fill in the pop-up window as shown in Figure 8 and click “Create.”

New (GX Works2 Project) X

Project Name

Tte

Project Type
| simple Project ~|

[[Juse Labels

Language

Ladder v

Cancel

Figure 8 — Creating a New PLC Program

2.3.2. Adding Existing Programs
Another approach is to add existing PLC and GOT projects to the MELSOFT Navigator.

a. From the MELSOFT Navigator project tree, one can right-click the “No Assignment Project” selection and
select “Import Project...” as shown below.

= PackmML workspace Test
=7 Metwork Configuration
% Metwork Configuration
=7 Module Configuration
&t Module Configuration

g Assignment Proisss

e Project List Mews Project »
- Structured Data T Ipart Project... J
EE PackMLFE -
=% System Labal List Export Project... L]k

% PacklML Sys Labels

Figure 9 — Importing Projects to iQ Works Navigator

b. One can then select GX Works 2 and GT Designer 3 files from the Windows Explorer into the Navigator. The
following example shows GX Works 2 file “PackML Template L Series” and GT Designer 3 file “PackML
Template GT11 Label Lite” were added to the Navigator. Note that the CPU and GOT types for the projects are
shown next to the file names.

0 MITSUBISHI ELECTRIC Part 2 - Page 4 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

= PackMLTemplate LO2 Mo Fault Testing
=3 Metwork Configuration
M0 \atwork Configuration
=3 Module Configuration
L Module Configuration
=2 Eﬁl Mo Assignment Project

L5k Project List
[f& Structured Data Types
=88 System Label List
3E Undefined_Name

Figure 10 — Example of Imported Files

2.3.3. Allocating Programs

Once the programs are imported, they need to be allocated to the proper modules and network component.
From the Navigator project tree, one can right-click the “Module Configuration” and select “Allocate Project
with Controller ...” and a pop-up window will appear to allow the user to select the files that match the CPU
module configurations from a drop-down list as shown in Figure 11 and Figure 12.

= PackML OEM Termplate Temp
=0 Metwork Configuration
% Metwork Configuration

Check »
= rﬁl Mo dssignment
B PackmL Mad
ﬁ PackiL Imp Module Configuratian »

K .
‘J Mation Conf Allocate Project With The Contraller... [

Parameter 3

ke Project List
& structured Dat. Eolder »
=¥ Systern Label Li
8% Undefined_

Export Project...

Figure 11 - Allocating Project to CPU Module

Allocate Project With The Controller E‘

Configuration Name Base Slot Module Name Praject Name:
1/L Module Configuration [cPU] Loz2CRU [Pack ML Template L Series -

PackML Template L Series

Figure 12 — Allocating CPU Program

a. Similar procedures can be followed to add the GOT program to the configured GOT in the system as
shown in Figure 13 and Figure 14.

= PackmL OEM Temnplate Termp
=-E onfiguration
= Metwork Check »
=3 Madule Con
=) ﬁ Module Cl Allocate Project with The Controller, .. %J
Mol Eoport Proect... FLUDEHCPU
L [[S M ——— 1= B2V 2)
=& Mo Assignment Project
3 PackML Mode State Screen(ST16%*-5 (200%600))
&b Project List
[f@ structured Data Types
= ¥ System Labal List
8% Undefined_Mame

Figure 13 — Allocating Project to GOT on the Network

0 MITSUBISHI ELECTRIC Part2-Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

Allocate Project With The Controller EJ

Configuration Name Ease Sict Madule Name Project Name:
1/ Netviork Configuration GT11F =g

PackML Template GT11 Label Lite

Figure 14 — Allocating GOT Program

3 Registering Labels in the System Label Database

Once the PLC and GOT programs are allocated to the MELSOFT Navigator, the important next steps are to create the system
label database so that the labels defined in one of the programs can be shared and used by another program.

In the Low Cost PackML Template System, all system labels are originated from the PLC program, thus the steps in this
document describe the procedure relating to creating the system labels from the PLC program. Similar steps can be taken if
any GOT labels need to be shared with the PLC. Consult the Motion Controller and GOT manuals on how to define the labels
and register them in the System Label Database.

Launch the GX Works 2 and in the PLC program, open the global variable window. Select the labels that need to be

a.
registered in the System Label Database and then click the “Register Device Name” button and confirm the
operation as shown in Figure 15.

= Clas Lkl Huaemes Data Iir Coratand Do Addess
5
.
7
8
L)
10
n
12
13
"
15 .
16 MLLSOT T Soriad GX Works? *
:g _ﬁ Il;gmt:w«'\:!omm' L
2
;II B s Mo
w - *Ta roflct r.—rchrmrﬂtlrr tabio abowe to the
O2ED ot | e | O Dot | Jrainn | Bl fore e Eroc aer comon
Figure 15 — Registering Global Labels in System Label Database
b. In the Navigator, select Workspace -> Parameter -> Batch Reflect. A pop-up window as show below will appear.
Confirm the execution of the execution by clicking the “Execute Reflection” button as shown in Figure 16.
Parameter Batch Reflection
Syskem configuration information is reflected in project parameters
assigned to the system configuration
g -The workspace is saved at the start of reflection, Also, running projects
are saved, and al projects are closed,
-Please do not open a project during the reflection,
-The process can be aborted by pressing [Ctrl] + [Break],
[Execute Reflection] f Cancel |
Figure 16 — Selecting Execute Reflection
A second pop-up window will appear and confirm the execution by clicking the “Yes” button in Figure 17.
¢ MITSUBISHI ELECTRIC Part 2 - Page 6 Custom Solutions Center

A7 AUTOMATION, INC.

Mitsubishi

PackML Implementation Templates — LO2 Release

Part 2: MELSOFT Navigator Configuration

The labels that will be registe

MELSOFT Series GX Works2

&

Do you want ta register the system label information vou have edited in the system label database?
IF not, it will be saved at the time of next project save.

No

Figure 17 — Confirming Execute Reflection

red are display in a window similar to Figure 18 below. Make sure the labels are the

ones that need to be registered and click the “Reflection” button to initiate the registration. The MELSOFT
Navigator will attempt to close the GX Works2 Project. Select “Yes” to close the GX Works 2 project so that the
System Labels can be reflected in the data base.

Check before registering in system label database

Find Subject | Find Characters [
Reflection Cont... | System Label ListName | System Label Name Label Name Data Type Constant | CPUName | Project Name Device Attribute

FR Recister Device ... [t GOT _Abortkey GOT_Abortiey Bit L02CPU PackML Templ... M7936 Global

2 Register Device ... Undefined_Name GOT_ClearAlTim... GOT_ClearAlTime... Bit Lo2cPu PackML Templ... M7984 Global

3 Register Device ... Undefined_Name GOT_ClearCurrM... GOT_ClearCurrMo... Bit Lo2CPU PackML Templ... M7985 Global

4 |Register Device ... Undefined_Name GOT_Clearkey GOT_Clearkey Bit Lo2CPU PackML Templ... M7937 Global

5 |Register Device ... Undefined_Name GOT_HoldKey GOT_HoldKey Bit L02CPU PackML Templ... M7933 Global

& | Register Device ... Undefined_Name GOT_MaintMode GOT_MaintMode Bit L02CPU PackML Templ... M7987 Global

7 |Register Device ... Undefined_Name GOT_ManualMode GOT_ManualMode Bt Lo2CPU PackML Templ... M7988 Global

8 |Register Device ... Undefined_Name GOT_ProdMode GOT_ProdMode Bit L02CPU PackML Templ... M7986 Global

9 |Register Device ... Undefined_Name GOT Resetey GOT_Resetkey Bit L02CPU PackML Templ... M7931 Global

10 |Register Device ... Undefined_Name GOT_Screen_Swi... GOT_Screen_Switch Word[Signed] Lo2cPU PackML Templ... ZR65535 Global

11 |Register Device ... Undefined_Name GOT_Startkey GOT_Startkey Bit L02CPU PackML Templ... M7932 Global

12 |Register Device ... Undsfined_Name GOT_StateCompl... GOT_StateComple... Bit L02CPU PackML Templ... M3000 Global

13 |Register Device ... Undefined_Name GOT_StopKey GOT_StopKey Bit Lo2cPU PackML Templ... M7934 Global 3
< ¥
Relationship diagram between system labe! database (*1) and praject (*2)

1 Refiection ﬁ

1

MELSOFT GX MT GT
gttt g [[Boe (B (35

&

C.

Figure 18 — Reflecting Labels to System Label Database

If there is no error in creating the system labels in the database, an indication will be blinking in the Navigator.

Right click on the blinking symbol and select the “Change Notification is received” as shown in Figure 19.

i Output

The parameter reflection to project in GT11**-Q will be started.

Reflecting the parameter to PackML Template GT11 Label Lite...

The parameter reflection to PackML Template GT11 Label Lite is completed, and the reflected project is saved.
The parameter reflection to project in GT11**-Q is completed normally.

—— The parameter batch reflection is completed. Error: 0, Warning: 0 —

Change notification is received.

8 Resuit of Power Supply Capacity and 1/0 Points Check L Cross Reference J

Figure 19 — Updating System Database in the Navigator

The change contents will then be shown similar to the Figure 20 below. Click the “Import” button and import the

changes to the Navigator.

Change Contents of System Label Database

ik
23

Find subject | TN | Find Characters | |
Import Cont... | System Label List ... | System Label Name | Label Name DataType | Constant | CPUMName | ProjectName Device Attribute Co®

1 Undefined Name GOT ProdMode GOT Prodvode Bit L0CPU PackML Templ... M7985 Global

2 |add Undefined_Name GOT Mantvode GOT_MantMode Bt L02CPU PackML Templ... M7987 Global

3 Add Undefined_Name GOT_ManualMode GOT_ManualMode Bit L02CPU PackMLTempl... M7988 Global

4 Add Undefined_Neme GOT_UseriMode GOT_UseriMode Bit L02CPU PackML Templ... M7989 Glabal

5 |Add Undefined_Neme GOT_UserZMode GOT_User2Mode Bit L02CPU PackML Templ... M7990 Global

5 add Undefined_Name ~ GOT Resetkey GOT_Resetkey Bit L02CPU PackMLTempl... M7991 Global

7 add Undefined_Name GOT Startey GOT Startkey Bt LO2CPU PackML Templ... M7992 Global =

8 add Undefined_Name GOT_Holdkey GOT_Holdkey Bt L02CPU PackML Templ... M7993 Global

3 add Undefined_Name GOT_StopKey GOT_StopKey Bt L02CPU PackMLTempl... M7334 Global

10 Add Undefined_Name GOT_UnHoldKey GOT_UnHoldKey Bit L02CPU PackMLTempl... M7995 Glabal

11 Add Undefined_Name GOT_Abortkey GOT_gbortkey Bit L02cPU PackML Templ... M7996 Global

2 |add Undefined_Name GOT_Clearkey GOT_Clearkey Bt L02CPU PackMLTempl... M7997 Glabal v
< >

Relationship diagram between system labe! database (*1) and project (2)

Import
Change Notification Function
MELSOFT
Navigator

D o D T D ar
Elfwarks2 ¥ Developer2 Designer3

Figure 20 — Database Change Contents

‘ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 2 - Page 7 Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

4 Using the System Labels in the GOT Program

To utilize the system labels in the GOT program, one needs to configure the objects in the GT Designer 3. In order for the
labels to be recognizable in the GOT program, the Navigator system needs to establish routing information.

4.1 Establish Route Information

From the Navigator, launch the GT Designer 3 with the GOT screens for the application. When GT Designer 3 program is
launched, the program will perform a system label update/check operation. If there are any system labels that are
already in use, the error messages as in Figure 21 will be displayed indicating that there is no route information. In
order words, GT Designer 3 does not know where the origins of these system labels are so it can interact with the label

®

properly.
System Label Update/Check
Register [Level [Enor [System Label Name [CH | [Device [Points [Sereen | Object ~
[1 |Ewor | The route information of the spstem label | GOT_ClearCurModeTin M73B4 |1 B3 Bit Suwitch
[0 |Ever | The route information of the system label | GOT_CleardTimesKey M7385 |1 B3 il Switch
[|Evor | The routs information of the system lsbel | GOT_Resetkey M7335 |1 B3 Bit Suwitch
[1 |Ewor | The route information of the system label | GOT_Startkey M7ags |1 B3 Bit Switch
[0 |Ever | The route information of the system label | GOT_HoldKey M7393 |1 B3 Bil Switch
[|Evor | The routs information of the system label | GOT_StapKey M7az |1 B3 Bit Suwitch
[1 |Ever | The route information of the spstem label | GOT_abortkey M7390 |1 B3 Bil Switch
[|Ever | The route information of the spstem label | GOT_UnHeldKey M7ae1 |1 B3 Bil Switch
[|Evor | The routs information of the system label | GOT_SuspendKey M7aEE |1 B3 Bit Suwitch
[1 |Ever | The route information of the spstem label | GOT_UnSuspendkey M7sE7 |1 B3 Bil Switch
[0 |Ever | The route information of the system label | GOT_StateCompleteKey M7386 |1 B3 Bil Switch
r Frean Thi rmiiba inkrmaation of bie anetann lshel [GOT Cleark a0 M7 1 B3 Rt Siniikk e
< >
“About genration of route information of system label
Generale the route information in MELSOFT Navigalor after a system label s set and saved in GT Designerd

Figure 21 — Error Showing Lack of Route Information

Leaving the GT Designer 3 project open, one can then launch the “Route Information” function from the Navigator
using the MELSOFT Navigator project tree by selecting Workspace -> Parameter -> Route Information/ Route

Parameters as shown in Figure 22.

Figure 22 — Establish Route Information

A pop-up window will appear allowing the user to save the GT Designer 3 project and the system will generate the

route information as shown in Figure 23. Click “OK” to accept the Route Information.

‘ MITSUBISHI ELECTRIC Part2—Page 8
AV AUTOMATION, INC.

Custom Solutions Center

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

Route Infarmation Check

St = End Route Dther Route
GT11%=.0.6-{Eerial Cable. 7). Mechuie Canfiguration. |

Figure 23 — Route Information Check Display

4.2 Setting Up System Labels for GOT Use
a. In GT Designer 3, select Tools -> System Label Update/Check as shown below to update the system labels in
the GOT.

li':.'| GT Designer3 ... StatePackML WorkspaceWPackML Hode $tate Screen - [B-1:Producing{Front+Back)]

i Project Edit SearchiReplace View Screen Common Figure ©Object | Tools | Communication Window Help

DBBl%ED@"~||%|EE@| Data Check...
irk - [0 °|@||. s Q.H_HEI . 100% |- | System Lbel Update/Check | /0

[B-17:User Defined ... X Data Size b lont+.,

i Gcreen 2 x

E e P Simulakor »

= = Base Soreen File: Conversion »
T Hew

M 1 Producing I 3
D ZMaintenance | r———
£ 3Manual - - Option...
M 16 UserDefined1 (BB
-1 17 User Defined 2 ! N .

Copy Screen Image ko the Clipboard

Customize. ..

=[] Wwindow Screen P] e b

R Mew | = -_,.————

Figure 24 — Using System Label Tool in GT Designer 3

b. From the Navigator, select Workspace -> Check -> Batch Check to verify if there is any error in the system label
operation.

i| O tiew

|| o ko B, B woworh Contueotion | gheade Cortepranen | Sherowaven” W]
[Firal Gt \Wheie Display -

i || Find Charscters

Deelete System Label Name - Label Nanf
1 I 507 screen_Seach GO Screen_Swch

Lokder ¥ LDEH)<QOELDEHPU>
ooa Crefrate) L 2 [e Packin

[chea * i Bt chek | Tmercloverwamng TeneRobOwaramng
Alocabe Prject With The Corlrolee... u,..‘.“mﬁﬁ-g,.ﬂmw-u
P ater L3 System Configuration
Systeen | sbel + | g srstempaet

Page Setyg...
| Pk Preew

A et s

LPackL Workspace

1 | Zracka workspace. . I >
i FL ™ 3 x
A PackML Workepite... |
Ext HeaFh

Figure 25 — Batch Check the System Labels

Confirm the Batch Check operation by selecting “Yes” in the pop-up windows that appear as shown in the
figures below:

MITSUBISHI ELECTRIC Part 2 -Page 9 Custom Solutions Center
AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

MELSOFT Havigator
HELSOFT Havigator

'2 Do ywou wark ko save the workspace PackML Warkspace?
.

Y Batch check is executed.
LY

This check may need some time, For executing the Following process:
~save Warkspace

~Check System Configuration

~Power Supply Capacity, 10 Poirks Check

~System Labe! Consistency Check Target project name:
Also, if this check is executed to a workspace in dispersed dewelopment, multiple errors may occur, because the workspace is in a mismatch status, _PackML Made State Screen

The following project in the workspace is currently used.
Using project is also saved as a batch

Do you want to execute?

fes ffes

Figure 26 — Pop-Up Windows for Batch Check Confirmation

c. After the Batch Check is completed and there is no error, the following window will appear. Select “Yes” to
bring up the next window and then select the “Execute Verify” to continue the Batch Verification process.

MELSOFT Havigator

EBatch check is completed.
There is no etror and no warning.
This check does not consider the module version. So, please refer to the manual of each module For details.

l?

Do yiou wankt to continuously execute batch verification between syskem configuration information and parameters?

Batch Yerification of System Configuration Information and Parameters

System configuration information is verified in all project parameters
assigned to the system configuration.

A -The warkspace is saved at the start of verification, Also, running projects
are saved, and all projects are closed.
-Please do not open a project during the verification,
-The process can be aborted by pressing [Cerl] + [Break].

Yerify Items Confirmation [Execute Yerify] L Cancel _|

Figure 27 — Pop-Up Windows for Batch Check Verification

d. [If thereis any error after the Batch Verification process, a window similar to Figure 28 will appear showing the
error.

Pt e

Wapas Dusa BRt per Srfeldelis Oe ek Mnde Do
WY -1 RTY: TF Sty
Warhapas

LA | i rvrm | oo Wwhrn st - ¢ 5« |t itated R

N | [T yTe—
B it wort: Cordganon [e =

PaciSA, Kccte S2ste Serwend5T 1495 DRS00 <536+ | Pod Do

ik vy e Pt e 4
T St T e
i G bt P M, i Stk Bvmem Commumater Sefirga G+ L
e e o e i ot S e A o . ’ o
« >
o Brekim (5] T | i

Figure 28 — Batch Verification Result Screen

e. The error in Figure 28 is fairly common indicating that system parameters configured through module and
network configurations in the Navigator have not been properly reflected in the PLC and/or GOT programs.

MITSUBISHI ELECTRIC Part 2 - Page 10 Custom Solutions Center
W AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

Execute Workspace -> Parameter -> Batch Verification of System Configuration Information and Parameters as
shown below.

Tz MELSOFT, Havigator ...ckML State EnginePackML StateiPackML Workspace - [PackML Sys Labels]

i| Workspace | Project Edit Wiew Systemlabellist Online Tooks Window Help

I wew... Chrl4+
:| Open... Chr+0
E B o nes B yetwork Configuration rﬁModule Configuration r
N Close
B seve chl+ 5 Find Object | whole Display ~|
ave ds... £**.5 (B00x500))<GT16* || Find Characters |
Delete, ..
Delet System Label N =
Eoidey * |IDEH}<QOEUDEHCPU> elete ystem ha el hame
1 . .GOT Screen_Swikc
Module Configurati » = =
odule Configuration 2 F
Check 3 3] TimeRolCverwarning
Allocate Project With The Contraller... +

-

Parameter

| 54| Batch Reflect
|,ﬁ EBatch Yerification of System Configuration Information and Parameters [

-

System Label

Page Setup... Route InformationfRouting Parameters
ég Prink Presiew
A& print... Chrl+P
1 PackML Warkspace
5 2 PackML Workspace. . | >
E 3 PackML State 1 x

4 PackML Warkspace. ..

Exit Ale+F4

Figure 29 — Bach Verification Configuration and System Labels

Select the “Execute Verify” button to confirm the reflection of system configuration information and
parameters.

Batch Verification of System Configuration Informati and Parameters

System configuration information is verified in all project parameters
assigned to the system configuration.

_A -The workspace is saved at the start of verification, Also, running projects
are saved, and all projects are closed.
-Please do not open a project during the verification.
-The process can be aborted by pressing [Ctrl] + [Break].

[Yerify Items Confirmation] [Execute Yerify]| Cancel i

f. Execute “Batch Reflect” again and then “Check”, “Batch Check” to make sure there is no mismatch.

: Output

The reflection to project in Module Configuration is completed norrnally.

The reflection to project in GT16%*-5 wil be started,

Werifying PackML Mode State Screen parameter ...

There is no mismnatched areas in the systern configuration and project parameters,

The verification of PackML Mode State Screen is completed.

The reflection to project in GT16**-5 is completed normally,

------ The batch verification between system configuration information and parameter is completed, Mismatch: 0, Error: O, Warning: 0 -

Dutput LE Task List L‘;‘('} Result of Power Supply Capacity and If0 Points Check Lw Cross Reference 1

Figure 30 — Output Window Showing Verification Results

4.3 Using the System Labels in GOT

a. From GT Designer 3, select Tools -> Options, select the “Operation” tab, and select the “Always Display”
option in “CH No. Selection Dialog Display Setting” to enable the system labels to be shown in DT Designer 3.

0 MITSUBISHI ELECTRIC Part 2 - Page 11 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

Options |z|

_/Dperation ‘}/View [Default Setting YiQ Warks Interaction]

Perfarm type zetting at the time of creating a new project
[Place figures/ohjects sequentially
[] Deselect fiqures/obiects once they are placed
[Dizplay the setting dislog once figures/objects are placed
[Mowe figures/obiects in the screen dizplay area [move to bemporany area with the Al key]

Close the first edited screen before opening another ane when the number of open soreens is at its mawimum — Maw: |25
[Effective from the next activation of GT Designer3]

4

Dizplay the dialog of Communication 5 etting before displaying the dialog of Communicate with GOT
CH Mo. Selection Dialog Display Setting

() Digplay orly when setting new device

() Aheays display

() Mot dizplay [Display the dislog of speciiied CH No.]

[Shift key] + [Device buttan] -» Display the dialog of "Select CH Mo."

Reflect the data type of system label

[0K] [Cancel

Figure 31 — Enabling System Labels in GOT

b. Double click on one of the objects on a GOT screen where a system label will be use to bring up the
corresponding Object Property window as shown in Figure 32 as an example.

ProgucingiTrnt hack)

i I
Furar ?llll!l Rt AL
Moder Timess Times

Tk TR Ok
Mode: Mode Mode:

Figure 32 — Configuring a Bit Switch Object to Use the System Label

c. Click the “...” button as shown in Figure 32, the following screen will appear for the user to select the system
label that should be used with the selected bit switch device. Click the “Select System Label” button.
MITSUBISHI ELECTRIC Part 2 - Page 12 Custom Solutions Center

AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

d.

Switch A Select CH Ho.
Device:| Select CH Mo. of Contraller Type far device entry.
e Current Device: iMEB48 |
Select Label
| Select Spstem Label | >
Lamp
K
Okey Select CH Mo,
) EBit
Controller Type
Owa
CH1: [MELSEC-Qnll, 17nD/M/MNCDR. CRnD-700]
Ottt | |

Figure 33 — Selecting System Label in GOT

The system labels will be displayed in the table as shown in Figure 34. Select the proper system label to be

used with the bit switch and click the “Import” button.

Import System Labels to Project

System Label List Name All ~ Refinement Options
Refinement Characters ‘ H Refinemnent]
Find Subject Find Characters ‘ ‘
System Label Mames Label Name Data Type Constank P Mame | Projeckt Mame Device Attribute Zommentk Remark A
! Iwordsigned] | e S
2 (=) PackML PackML PackMLFE QOEUDEH.., PackML Imple. ..
el e
PaThIL Eit QOAUDEH... PackiL Imple... MGE48 1
5 1 PackML Bit QODBUDEH... PackML Imple... MGE847
6 CmdStop PackML Bit QOBUDEH... PackML Imple... ME846
7 CrndHald PackML Bit QOBUDEH... PackML Imple... M&845
8 CmdUnhold PackML Eit QOEUDEH. .. PackML Imple... M&a44
9 CmdSuspend PackML Bit QOEUDEH.., PackML Imple... M&343
10 CrdUnsuspend PackML Eit QOEUDEH... PackML Imple... ME342
11 Crdabart PackML Bit QOEUDEH... PackML Imple... MB841
12 CrdClear PackML Bit QOBUDEH... PackML Imple... MB340 b
g | &
Relationship diagram between system label database (*1) and project (*2) .
:1 o [l @Impnrt \
20
MELSOFT (e 1 MT ar
R Wavigator D Warksz [aDaveluperZ DasignerS

Figure 34 — Selecting System Label from the Database

The label will then show in the object property window as shown below. However, if the routing information
has not been properly established, the label will be pre-fixed with two question marks “??” indicating the
label is still not yet valid to be used by GOT.

Part 2 — Page 13

0 MITSUBISHI ELECTRIC Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

Bit Switch

3

Basic Settings Advanced Settings

Device® Slyle“ Extended | Trigger
Switch Action

Device: [77PackML CmdRieset v

Action
(& Momentary O Altemate

O 8et () Reset o

Lamp

©Key
(@]}
O whord

Object Name: l:l
Figure 35 — Verifying System Label Validity in GT Designers 3

e. If that is the case, execute “Tools -> System Label Update / Check” in DT Designer 3 and the following error
message will be displayed conforming that there is no route information. In other words, GT Designer 3 does
not know where the system label is originated.

System Label UpdatefCheck

‘ Device | Points

|Enor Systemn Label Mame |CH

The route infarmation of the system label cannot be acqui i PackML

|F\eg\ster |Leve| |Screen |

< 1l | ¥

“About generation of route infarmation of system label
Generate the route information in MELSOFT Navigator after a system label is set and saved in GT Designer3.

Figure 36 — System Label Update Check Error in GT Designer 3

f. From the Navigator, select “Workspace -> Parameter -> Route Information/Routing Parameters” and the
proper routing information will then be generated showing where the system label data is originated as shown
in Figure 38.

MITSUBISHI ELECTRIC Part 2 - Page 14 Custom Solutions Center
AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 2: MELSOFT Navigator Configuration

H R Chrieh
;% Open... Chri+0

Close

B seve Chrl+5

Save As...

Defete...

Folder

¥ JDEH)<QOBUDEHCPU >

Module Configuration

Chedk
Allocate Projeck With The Controller...

i Workspace | Froject Edt View Systemlabellist Online Tools Window Help

B pyetviork Configuration r [Module Canfiguration [’g Project |

Find Sbject

Find Characters |

Delete System Label Name -
1 GOT_Screen_Switch GOT_Scree
z 1 packe PackiL
3 [0 TimeRoloverWarning TimeRolloy
4

[porameter

| gl Bakch Reflect

System Labsl

» |8 Batch verffication of Syste;

m Configuration Information and Parameters

Page Setup...
&g, Print Preview
A print... Chrl+p

Route Information/Routing Parameters

1 PackML Workspace
2 PackML Warkspace. ..
3 PackML Warkspace. .

4 Test Project for...

Exit Alt+Fa

Figure 38 — Routing Information

g. Execute Batch Reflect again on the Navigator. If there is no error, re-launch GT Designer 3, and the System
Label Update / Check operation will execute automatically. The system label will now become valid as shown

in Figure 39 without the question marks.

| Dutgat

Systom bibel consstency chack & comploted.
ore 5 i onIOF and r0 warming.

Purametes: X

o 4
To moort the gorarated route information to GT Desgner3, it is neoessry to s

th workspace,
function.

egister the generated rauting paramater to the project with tha parsmater refiaction

The route nformation Qenerabon ik compited, —e-

gt [TTech o | 5P f Pover Sy Cacty a1 Pl o

G erere |

MITSUBISHI ELECTRIC
AUTOMATION, INC.

Part 2 —Page 15

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 2: MELSOFT Navigator Configuration

Bit Switch 3]
Basic Settings
Device® F Stle® F Text* / Extended I’Tnggar
Switch Action
Device: v C]
Action
(&) Momentary O Altemate
) Set) Reset add
Lamp
@ Key
O Bit
O whord
Object Mame:

Figure 39 — Valid System Label in GT Designer 3

5 Summary

After completing the configuration steps described in this document, the system foundation is established to support the
detailed application program development.

Users should refer to user and system manuals corresponding to the hardware components and software packages that are
used in an application for further details.

0 MITSUBISHI ELECTRIC Part 2 - Page 16 Custom Solutions Center
A% AUTOMATION, INC.

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

Content

R 101 o To Vot o] o TSP PR PO PRORO 1
2 Key PackTags Design CONSIAEIAtIONScccuuiiieiieeeiiteececitteestee e sttt e e e te e e staee e s teeeeasteeessseeaansseeeassseessseseesssaeesnnsseesanseeeneenn 1
3 PackTags Implementation CONSIAEIAtiONS.ciiii ittt sttt e st e st e e sbee e bt e sabe e e bt e sabeesaseesaneas 1
4 IQLSYSTEM CONFIGUIAtION .e.ueeiiiiiiiie ettt ettt et b e et e st e e s ae e e s bt e e bt e e bt e e bt e sa b e e easeesabeesaseeabeeens sabeeenseesabeesnneenns 2
A.1 PLC Il ettt ettt ettt ettt et h et et s h e e she et e et e eh e e e bt e bt e a bt euteehe e ke e ateeateehe e be e eabe e teshteehe e bt eateeatesbeenbeebeans 3
L TV ol TR P PP OPRTN 3
4.3 BUIlt-in EtNerNet POrT SETEINGuvvii ettt e et e e et e e e te e e e ettae e e sabeeeeestaeseeasaeeesasaeaeansteeesssaaesss sanreaann 4
I C) VoY ¢ P A =1 oY= W T aT o] (=T 4 =T o = Lo o RS 6
5.1 Command Labels — PackTags_COMMANGdccociiiieiiiiiiiiie e ecee e esee e e e st e e s e nta e e e sata e e e s ataeesensaeseensaeeesnsaeeeaseeeesnenens 6
5.2 Status Labels — PACKTags_StAtUscccuiiiiiiriiiiiiieiiie ettt ettt sttt st sat e e st e it e e bt e e b e e st e e sseesabeesaseesabeesan nbee 7
5.3 AdMINISTratiVe LADEISeeieieeiee ettt sttt e b e sae e s bbbt e e b e e sa bt e sare e te bt e e beeeneesares 7
6 KepWare Server CONTIGUIAtIONccuii ettt ettt et e e e ettt eeeebeeeeeateeesaseeeatbeaeesaeaessseeeeasseeeensses srseesnsrenann 9
6.1 Adding a Channel of CoOMMUNICATIONcciuiiiiiiiee et et ete e e ettt e e e tte e e et eeeesabeeeeeasaeeeeaseeeeeateeeeensaeeeanreeans 9
(T A Vo o [T Tl L1 ol T PSP 12
7 Kepware Tags IMPIEmMENTAtiONcccuii ettt et e e ctte e e et e e e ette e e e ttee e e ateeeeassaeesaasaeeeassaeeaassseeessaeaeansses reeesnnsns 17
2 R O =Y 1 ¥ = o V= =YL PR 17
@ MITSUBISHI ELECTRIC Part 3 - i Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —ii Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

1 Introduction

The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackTags specification in an iQ PLC.

PackTags specification is a part of the overall OMAC PackML standard and defines a set of named data elements used for
open architecture, interoperable data exchange in automated machinery. PackTags are useful for machine-to-machine
(inter-machine) communications; for example between a Filler and a Capper. PackTags can also be used for data exchange
between machines and higher-level information systems like Manufacturing Operations Management and Enterprise
Information Systems.

The use of all PackTags is needed to be consistent with the principles for integrated connectivity with systems using this
same implementation method. Required tags are those necessary (1) for the function of the automated machine or (2) the
connectivity to supervisory or remote systems.

This document describes the implementation of the PackTags template files as a part of the Mitsubishi PackML Template
system.

2 Key PackTags Design Considerations

The PackTags are implemented as a part of the Mitsubishi PackML Template system. The PackML Template system
architecture is described in Part 1 of the Users Guide. Because of the large number of tags required to support the PackTags
specification, an extended memory card maybe required to hold the symbolic information depending on the type of PLC
that is used.

Generally, PackTags data is passed to higher-level information system using OPC protocol on a standard Ethernet-based
communications network. Thus, in addition to the Template System hardware and iQ Works software, a Kepware OPC
server is also integrated to work with the iQ PLC to form a total solution set. Kepware KEPServerEX V4.5 with enhanced
Mitsubishi Ethernet Driver® is used in the PackML Template system implementation.

Following is a list of critical PackTags design considerations:

e The PackTags are implemented in an iQ PLC system as global labels and readily available for use by OEM machine
control programs. In other words, the tag values should be accessible and be populated by OEM machine control
programs.

e The PackTags should be accessible by external systems compliant to PackML and PackTags standards.

e The PackTags implementation on iQ should be directly usable by users of the iQ system. In other words, all PackTag
labels should be configured and ready for use by users without additional configuration of the labels. All register
assignments should not have to be altered by users of the system.

e Restrictions are placed on the dimensions of the variables to reduce the amount of memory locations that are
consumed to support the tags.

3 PackTags Implementation Considerations

All PackTags are implemented as global labels, and the built-in Ethernet port on the iQ PLC CPU is used to connect the iQ
system to Kepware OPC server.

The label names are shortened from the PackTags specification to be used with the iQ platform. PackTags are implemented
in three Data Groups: Command, Status, and Admin, and the correlation of standard PackTag names to the shorten iQ
labels and the Kepware tags is shown in the Error! Reference source not found. for reference.

! Note: The standard Mitsubishi Ethernet Driver was enhanced to extend allowable register range selections as well as the support of “Double” and “Date”
data types.

0 MITSUBISHI ELECTRIC Part3-1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

Following restrictions are placed on the dimensions of the labels:

There is no remote interface (i.e. the total number of upstream and downstream machines) allowed.
The number of parameters that are given to the unit machine locally is limited to 3.

The number of product types that can be produced on a machine is limited to 2.

The number of process variables needed by a unit machine for processing a specific product is limited to 3.

The number of raw materials (ingredients) that are used by a unit machine in the processing of a particular product is
limited to 3.

The number of parameter tags associated to the local interface (e.g. parameters that are displayed or used on a unit
locally such as an HMI) is limited to 5.

The number of alarms of a machine is limited to 96.

The number of alarm history is limited to 96.

The number of Modes of a machine is limited to 5

The number of states in each mode of a machine is limited to 17.

The number of material used or consumed in a production machine is limited to 3.

The number of product types that can be processed by a production machine is limited to 3.

The number of product types that can be marked as defective by a production machine is limited to 3.

4 iQ System Configuration

This section documents the configuration of PLC parameters to support the PackTags implementation.

project |
iy B

= Parameter
< I PLC Parameter
= G0 Par ameter
1 Remote Passward
g Intelligent Function Madule
\} Glohal Device Comment:
i Global Label
g Program Jetting

5 .:-\

| Device: Memary
Device Initial Value

.I;h Project
L'.‘I User Library

@ Connection Destination

Figure 1 — Selecting PLC Parameters for Configuration

0 MITSUBISHI ELECTRIC Part3-2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

4.1 PLCFile
Because of the large number of tags required to support the PackTags specification, a PLC file is used to allocate

extended memory locations for the PackTags and system labels that are used to process events (See Part 5 of the Users
Guide).
Select the “PCL Parameter” and then the “PLC File” tab to add the extended memory in the system.

L Parameter Setting

= |PC Sva |BeatFe |Program |S°C [Dewce |14 Assigrment |Bultn Eshernet Port Settng | Bultn 1/0 Funcion Seteng

Deace inital Vake
¥ Mot Lised
- ~ Uise the s fle ame a5 the program
ComemordrgMemery [~ <] ComespondngMesory [-]
1™ e the flowing fie
CotesondrgMesary [<]

6 e Fie Name
Capaaty
Fie for Local Device:

™ Transfer T notUsed
Fubrrig seltngs are avalabie n devie settrg Lee the foluming e
when select “Use the folosng fie” and spectfy capboty. P |
Change of lateh(Z) of fle regater. Comespanding Memary =]
shsssgrment to expanded data regster epanded Ik = F

regater of part of fle register area.

Comment Fle Used in a Command Fie used for SP.DEVET/S.0EVLD Instruction
= Mot Uued

T Notused
™ Use the same fe name & the program ™ Use the folosing fie
Correspranding Memary Cornesponding Memory. =
™ use the folowng e e Narme
Comespondng Membr e
el vl . Capacity I K Pons
Fie Piarme | (20--36 Points)
Print Window,.. | Print Wanom P Assgrment velmit | o | B | Corcel |

Figure 2 — Configuring PLC File and Capacity

It is critical to note that the PLC file is assigned to Standard RAM of the PLC by default. The capacity of the Standard
RAM of L02 is 64K and the total 64K points are used for the total number of PackTags and system labels in the Low Cost

PackML Template system.

4.2 Device
In this PackTags implementation, most labels are assigned to D registers. A few tags with data type bits are assigned to

M bits. In the “Device” tab, assign the extended points to ZR registers.

0 MITSUBISHI ELECTRIC Part3-3 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

w |PC Syatem |PCFle [P0 RAS |Beot i |Program |ff Dever [0 \sigrment |Bult-m Evhernet Port Settng | fultn 10 Function Seting
o 5 [0 P2 PR i i
ToutRely | % || @ | |
= %
LM 3
Lamhmeay [L [0 =
Lekielay | [
Arvunoptor | F
Lnicfpecal | 58 |56 | X |
Edige Rsley o
Step Relay £ 1
Timer. x
Retentve Tmer (5T [30]
Counter 1%
. D 1
Lk Reguter | W W] 50 |
Link speaal X |
Index E £ 1
DeveeTo [K e
wodDeee [T mwed ;rﬁ;::*mbfmmx@.watm«p.nmrmn-w.emaw.
Btoewce KB i e ool G, chase o B et SUAC e et et

Fie: Riegrates Eaberabed Seltng

Foltrnng settng are avalabie

| when select Tise the foloarg fie”

1 fle reuter sating of FLC fie setirg.
«Change ef lakch(2) of fle regster.
“Assigrement b eapanded dats

regster of 8 part

e
of e regater aea.

Print Window,.. | Print Wankmw P Asspment Defmit | chea | B | cancel

Figure 3 — Configuring File Register Extended Setting

4.3 Built-in Ethernet Port Setting

The built-in Ethernet port of the CPU module is used to communicate with the Kepware OPC server. The Ethernet port
should be configured properly as described below and shown in Figure 4:

e Setthe proper IP address and Subnet Mask
e Select “Binary Code”

e Select “Enable onlne change (FTP, MC Protocol)”

QParameter Setting ﬁl

IF Addiess Setting Open Sefting
pen
Input Fomat [DEC. =

FTP Setting
1P Address(1)

Time Setting
Subnet Mask Pattem 255] 255] ess| o

Default Router [P Address | 192] 1e8] 1] 1]

Setif itis needed(Defaul / Changed)

Commurication Data Code
@ Binary Code

" ASCI Code

¥ Enable oniine change IFTF. MC Protocol)
I~ Disable diect connection to MELSOFT

I Do not respond to search for CPU (Buillin Ethemet port) on network

("1]The items indicated in green are set in MELSOFT Navigator,

PRt Window. . | PrlnthndanvawewJ Mlmnwladgex‘fnss\gnmantJ Defailt | Check ‘ End cancel

Figure 4 — Configuring the Built-in Ethernet Port

0 MITSUBISHI ELECTRIC Part3-4 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Click the “Open Setting” and configure the channel to communicate using TCP, UDP, MC Protocol, and port
number to the desired value.

0 Inthe PackML Template System architecture, the port number is set at hexadecimal number 5001(or
decimal value 20481) for communication between the GOT and the PLC with UDP protocol.

0 The Port Number 5002 is configured to use TCP for communication with the Kepware OPC server.

Buitt-in Ethernet Port Open Setting @

Frotocol Open System TCP Cornection H?:,Sotf:?g_on ?Peiéndigzz Dszﬁ'{ﬁ?”

1 |1CP - [|MC Pratocol - - |5002
2 |uDP + |MC Protocol - ~ | 5001
3 |UDP w |[MELSOFT Connection w -

4 |TCP ~ |MELSOFT Connection = -

5 |TCP + [MELSOFT Connection - -

E |TCP w |[MELSOFT Connection w -

7 |TCP w |[MELSOFT Connection w -

a |TCcp ~ |MELSOFT Connection = -

3 |TCP » |MELSOFT Connection -

10 [TCP w |[MELSOFT Connection w -

11 [TCP w [MELSOFT Connection w -

12 |TCP « |[MELSOFT Connection = -

13 [TCP v |[MELSOFT Connection w -

14 |[TCP w |[MELSOFT Connection w -

15 [TCP w [MELSOFT Connection w -

18 |TCP « |[MELSOFT Connection = -

Huost station port Mo, destination port Mo: Please input in HE.

End Cancel |

Figure 5 — PLC Communication Channel Configuration for GOT and OPC Communication

0 MITSUBISHI ELECTRIC Part3-5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

5 GX Works2 Label Implementation

As shown in the Appendix, all the labels that are required to support the PackTags standard are implemented in the iQ PLC
using GX Works2 global labels. The PackTags labels are grouped into three categories: Command labels, Status labels, and
Administrative labels. Five different structured data types are also created to support the label definitions.

+ Parameter

g Intelligent Function Module

l_} Global Device Comment
—-{§&) Global Lahel
2 OEM_Templat=_Event_GOT_Keys
% OEM_Template_Event_L abels
4% OEM_Template_PackML_GOT _Keys
% OEM_Template_PackML_Labels
e PackML_FB
BE Packlags_Admin
% PackTags_Command
% PackTags_Status

+-fimy PTOTTEmT-Setbing
Y

-+ Program

+1 (g FBJ/FUN

=1-{B® Structured Data Types
W Cmd_Pdt_Type

E’. Cmd_RemIntf_Type

SDT_EventCfg
SOT_EventStatus
SDT_EventSummation
W Sta_Pdt_Type
Sta_RemlIntf_Type
[Local Device Comment

+ Device Memory
Device Initial Value

Figure 6 — Global Label Groups and Structure Data Types

B
B
ES
:

5.1 Command Labels — PackTags_Command

The Command labels are created in the Global Label section with the proper data types. The assighnments of these
Command labels start at Data Register 1000 and Internal Relay M8100.

Class Label Name Data Type Constant Device Address
1 |VAR_GLOBAL ~ |Cmd_UnitMode Double Word[Signed] D1000 %MDO. 1000
2 |VAR_GLOBAL ~ |Cmd_UnitModeChange Request |Bit M2100 =MX0.8100
3 |VAR_GLOBAL ~ |Cmd_MachSpeed FLOAT (Double Precision) 01002 %MLD.1002
4 |VAR_GLOBAL |Cmd_Mateniallnterocks Double Word[Unsigned]#Bit String[32-bit] D1006 %MD0.1006
5 |VAR_GLOBAL w |Cmd_CritrCmd Double Word[Signed] 01008 %MD0.1008
£ |VAR_GLOBAL ~ |Cmd_CmdChangeRequest Bit Mg %MX0.8101
7 |VAR_GLOBAL ~ |Cmd_ID_Para Double Word[Signed]iD..2) 01010 %MDOA010
8 |VAR_GLOBAL ~ |Cmd_Name_Para String(0..2) D1016 EMWO016
g |VAR GLOBAL - [Cmd_Unit_Pamm Sting(0..2) DI070 MW0.1070
10 |VAR_GLOBAL ~ |Cmd_Valug_Para FLOAT (Double Precision)(0..2) 01124 “MLD.1124
11 |VAR_GLOBAL w [Cmd_PdtID_Pdt Double Word[Signed}{0..1) 01136 %MD0.1136
12 |VAR_GLOBAL ~ [Cmd_Pat Cmd_Pdt_Typel0..1) Detail Settin Detail Setting
13 -
Figure 7 — PackTags_Command Global Labels
¢ MITSUBISHI ELECTRIC Part3-6 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

The structured data type used in the Command Labels is Cmd_Pdt_Type. Its configurations are shown in the follow screen.

3

Structure Device Setting

Structure Array Cmd_Pdit (Cmd_Pdt_Type[2])
Cmd_bat_Type Label Name Data Type Device Address | =
- ID_ProVar | Double: 2) 01140 %MD0 1140
e Name_ProVar |Siring(32)0..2) 01146 LMWO.1146
Unit_ProVar Stina(34)0.2) 01200 SLMW0.1200
Valus_Provar FLOAT (Double Frecision)(0.2) D1254 "CML0 1254
ingID_ings |Double Word[Signed)0.2) 01266 21D 1265
D_ings_Fara | Double ord(Signed)(0. 2,02} D1272 %MD0.1272
Name_Ings_Para Sting(34)0.2.0.2) 01290 SLMW0.1290
Unt_ings_Para I 20.2) D1452 CIW0 1452
Value_Ings_Para |FLOAT (Double Frecsion)0 2.0.2) 01612 ML0 1614
“ [+ [T]
Structure Array Offset Value
Word Device: []
oK
I e gtespaton [o |
Cancel

Figure 8 — Cmd_Pdt_Type labels

5.2 Status Labels — PackTags_Status

The Status labels are created in the Global Label section with the proper data types. The assignments of these
Command labels start at Data Register D2160 and Internal Relay M8102.

Class Label Name Data Type Constart Device Address
1 [VAR GLOBAL ~]|5ta_UnthlodeCurrent |Double Word[Sigred] D2160 %WD0.2160
2 VAR GLOBAL - 'S_ta_UnnMndaChangeRauuestedlErt WE102 ZWX0 8102
3 VAR GLOBAL ~ [Sta_UnitMedeChangelnProcess [Bt METD3 SHAOE10E
4 |VAR GLOBAL - [Sta_StateCurent Doubls Word[Sigred] D2162 WD0.2162
5 VAR GLOBAL ~ [Sia_StaicRequested Double Werd[Signed] D214 %MD0.2164
& VAR GLOBAL ~ [Sta_StateChangeinProcess |t WET04 ZMX0 8104
7 VAR GLOBAL ~ [Sta_MachSpeed FLOAT {Double Precision) D285 L0216
8 VAR GLOBAL ~ [Sta_CurlachSpeed FLOAT (Double Precision) D2170 ZWL0.2170
3 VAR GLOBAL ~ [Sta_Materidlerocks Double Werd[Unsigned)/Bit Sting[3201] D2174 %MD0.2174
10 VAR GLOBAL ~ [St=_ID_Pars Doubls Word[Sigred]0..2) 02176 ZWD0.2176
11 [VAR_GLOBAL - |Sta_Meme_Pars String(0.-2) D282 MW02182
12 VAR GLOBAL ~ [St=_Unt_Pam Strng(0.2) D2235 MW 2236
13 [VAR_GLOBAL - [Sta_Value_Pam FLOAT (Double Precision)0..2) D250 %ML0.2250
14 [VAR GLOBAL ~ [Sia_PdiD_Pet Double Word(Sigred)0..1) D2302 %MD0.2302
15 [VAR GLOBAL |5tz Pat Sta_Pet_Type(D.1) Detail Sefting Detail Sefting
16 -

Figure 9 — PackTags_Status Global Labels

The structured data type used in the Status Labels is Sta_Pdt_Type. Its configurations are shown in the follow screen.

Structure Device Setting

X

Structure Array Sta_Pot (Sta_Pdt_Type[2])
S‘EU"DE Label Name Data Type Device Addess |~
] ID_FroVar |Double Werd[Signedl(0.2) 02306 %MD0.2306
m Name_ProVar Sting(4)0.2) D232 SMWD2312
Uni_Prover Stna4)0.2) 52366 %MW0.2365
Vol ProVar FLOAT {Double Proconi0.2) 52420 MLD 2420
ngID._ings Double Word[Signed}0.2) D232 D0 2232
D_ings_Para Double Word[Signed}0.2.0.2) D238 %.MD0 2438
Neme Ings_Farm SinaG40.2.0.2) D245 W0, 2456
Unit_ngs_Pera Sing(32)0.2.0.2) D2618 MW0.2618
Value _Ings_Para FLOAT {Double Precison}0. 2.0.2) 02780 L0 2780
‘ [+
Structure Array Offset Value
\Word Device:
I~ Use Bit Designation
Cancel

Figure 10 — Sta_Pdt_Type labels

5.3 Administrative Labels

The Administrative labels are created in the Global Label section with the proper data types. The assignments of these

Command labels start at Data Register 73300.

No Internal Relay is used.

‘ MITSUBISHI ELECTRIC
A7 AUTOMATION, INC.

Part3-7

Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release

Part 3: PackTags Design and Implementation

Class Label Name Data Type Congtant Devics Address
1 VAR GLOBAL ~ |Adm_ID_Para Double Word[Signed]{0. 4) D3330 =MD0.3330
2 [VAR GLOBAL ~ [Adm_Name_Pam String(0.4) D2340 MWD 3340
3 VAR GLOBAL ~ | Adm_Unt_Pars String(0..4) D3430 EMW03430
4 [VAR GLOBAL ~ [Adm_Value_Pars FLOAT (Double Precision(0.4) D3520 ZWL03520
5 VAR GLOBAL = [Adm_ID_Alem Double Word[Signed](0. 95) D3540 %MD0.3540
6 VAR GLOBAL ~ [Adm_Value_Alamm Double Word[Signed)(0. 95) D3732 ZWD0.3732
7 VAR GLOBAL | Adm_Message_flam String(0..55) D3524 %MW0.3524
2 VAR GLOBAL [Adm_TmEvt_AmDate_Msm _|OPC_Date(0.55) Detail Sefting Detail Sefting
9 VAR GLOBAL ~ [Adm_TmEvi_AmTime_Asmm__|OPC_Date(0.55) Deta Setting Detail Setting
10 |[VAR_GLOBAL ~ |Adm_TmAck_AmDate_Aem _|OPC_Date(0.95) Detail Sefting Detail Sefting
11 VAR GLOBAL ~ [Adm_TmAck_AmTime_Alzm _|OPC_Date(0.55) Detai Setting Detail Sefting
12 [VAR_GLOBAL ~ [Adm_AlamExert Double Word[Signed] D718 %MD0.7188
13 [VAR GLOBAL ~ | Adm_ModeCurertTime Double Word[Signed](0.5) D790 ZWD0.7150
14 [VAR_GLOBAL |Adm_ModeCumuitiveTme | Double Word[Signed)0..5) D720z %MD0.7202
15 |VAR_GLOBAL - |Adm_StateCurentTime Double Word[Signed}(0.5.0..17) D7214 “MD0.7214
16 VAR GLOBAL [Adm_StateCumiative Trme Double Word[Signed)(0.5.0.17) .. D7430 WD0.7430
7 |VAR_GLOBAL = |Adm_ID_PredConsumedCri__| Double Werd[Signed0..2) D764 “MD0.7645
18 [VAR GLOBAL ~ | Adm_Name_ProdConsumedCat_| Stang(0..2) .. D7652 “ZMWD.7652
19 [VAR_GLOBAL ~ | Adm_Unit_FrodCensumedCnt | Sting(0..2) D7706 %MW0.7708
20 VAR GLOBAL ~ [Adm_Court_ProdConsumedCrt_| Double Word[Signed]0-2) - D7760 “ZWD0.7760
21 VAR GLOBAL ~ | Adm_AccCrr._ProdConsumedCr | Double Word[Signed)i0..2) 7766 “MD0.7766
20 VAR GLOBAL < |Adm_ID_ProdProcessedCnt | Double Werd[Signed](0..2) D7772 %MD0.7772
23 VAR GLOBAL ~ [Adm_Name_ProdFrocessedCrt_| Sting(0..2) .. D778 ZMWD.7778
24 VAR GLOBAL ~ |Adm_Unit_FrodFrocessedCnt | Sting(0..2) D783z “MWD.7E32
25 VAR GLOBAL | Adm_Court_ProdProcessedCrt_| Double Word[Signedli0..2) .. D7886 D0 7885
26 VAR GLOBAL = | Adm_AceCr_ProdProcessedCri | Double Werd[Signed)0..2) D785 %MD0.7852
7 VAR GLOBAL ~ [Adm_ID_ProdDefectiveCnt Double Word([Signed)(0. 2) - D7898 “WD0.7838
28 VAR GLOBAL ~ [Adm_Name_ProdDefectiveCri_| Sting(0..2) D7504 MWD.7504
25 VAR GLOBAL ~ |Adm_Unit_ProdDefectiveCnt | Sting(0..2) D7958 “MWD.7958
30 [VAR GLOBAL [Adm_Court_ProdDefectiveCrt_| Double Word[Signedi0-.2) .. D801z ZWD0.E012
31 |VAR_GLOBAL | Adm_AceCri_ProdDefectiveCri | Double Word[Signed)0..2) DE012 “MDO.E0TE
32 [VAR GLOBAL | Adm_AccTimeSincereset Double Word[Signed] .. Da024 ZWD0.8024
33 [VAR_GLOBAL | Adm_MachDesignSpeed FLOAT (Double Precision) Ds02E %MLO.E026
34 [VAR GLOBAL ~ [Adm_ID_Alsmiistry Double Word([Signed](0. 95) . D8030 “MD0.8030
35 [VAR GLOBAL [Adm_Value_AmFisiry Double Word[Signed)(0. 95) .. De2z2 D0 8222
36 |VAR_GLOBAL ~ [Adm_Message_AmHstry Siring(0..95) De414 SMWD.8414
7 [VAR GLOBAL ~ |Adm_TmEvt_AmDate_Amtisiry |[OPC_Date(0 55 - Detal Setting Detail Sefting
38 VAR _GLOBAL [Adm_TmEvi_AmTime_AmHisiry |OPC_Date(0.55) Detail Setling Detail Sefting
39 [VAR GLOBAL ~ [Adm_TmAck_AmDate_AlmHistry |OPC_Date(0.55) Detail Sefting Detail Sefting
40 VAR GLOBAL | Adm_TmAck_AmTime_AmHstry [OFC_Date(0.55) Deta Setting Detail Sefting
41 VAR GLOBAL ~ [Adm_AlamistoryExdert Double Word(Signed] D11678 “MD0.11678
42 VAR GLOBAL ~ [Adm_PACDateTme_Date OPC_Date Detal Setting Detail Sefting
43 VAR GLOBAL - |Adm_PACDateTme_Time OPC_Date Detail Sefting Detail Sefting
a4 -

Figure 11 — PackTags_Admin Global Labels

The only structured data types used in the Admin Labels is OPC_Date. This data structure is needed because the iQ
system can only assign 32 bit integer but the OPC server requires 64 bit integer to be converted to the ISO Date and
Time formats.

Structure Device Setting @

Structure Array Adm_TmEvt_AlmDate_Alarm (OPC_Date[96])

0PC_Date “ Label Name

Date_Low
Date_figh

Address | ~
|:MD0 5652
|MD0 5654

Datz Type Device
| Double Word[Unsigned]/Bit Sting[32bi] | 05652
| Double VWord[Unsigned)/Bit Sting[32:bi] B

[1
[2
[3
4
[s]
[e]
7
[8]
[s]
[10]
[11]
[12] |
[13] q >
o [+[]
[15] Structure Array Offset Value

16]
E”} Word Device:
[18] I™ Use Bit Designation

R

Figure 12 — Example of OPC_Date Data Type

Only the Date_Low portion of the data structure needs to be populated with the proper value. Logic needs to be
developed to provide the actual data and time values. The Date_Low needs to hold the value representing the number
of seconds from midnight, January 1, 1970 to the current date and time. Because the date and time required for
PackTags are more actual time of events (i.e. no historical time stamps will be required before 1970), only positive
numbers are permitted in Data_Low.

As an example, to properly represent July 2, 2009 at 3:05AM 30 seconds, the Date_Low should have the value of
1,246,503,930.

e There are 39 years from 1970 January 1 to 2009 January 1 and there are 10 leap years with the total number
of 13515 days

e There are 182 days from 2009 January 1 midnight to 2009 July 2 midnight.

Part3-8

0 MITSUBISHI ELECTRIC Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e There are three hours and 5 minutes from midnight to 3:05:30AM

e Thus the total number of seconds = (13515+182) * 24*60*60 + (60*3+5)*60 + 30 = 1,246,503,930

6 Kepware Server Configuration

An OPC server is required to connect the PackTags implemented in the iQ PLC to an external world such as a MES system or
an HMI.

Kepware OPC server is used for the PackTags implementation because of its functionality and capable Mitsubishi driver to

connect with Mitsubishi devices. It also supports long tag names and this capability allows the shortened label names to be
mapped to the names as specified in the PackTags specification.

6.1 Adding a Channel of Communication

e Start the Kepware KEPServer Ex software and click to add a channel. In the example, the Channel Name is

PackML.
- [2[x]|
Bl
Tag Hame
Hew Channel - Identification
18 channel name can be from 1 to 256
characters in length,
Mames can not contain periods, double
quotations or start with an underscore
Channel name:
PackML
Mext » Cancel Help
B Devices | () Advanced < >
Ready \Clients: O |Active tags: Oof O
Figure 13 — Adding Channel in Kepware
¢ MITSUBISHI ELECTRIC Part3-9 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Select the Device Driver to be “Mitsubishi Ethernet” from the drop down list

0O

[Select the device driver you want to assign to
the channel

The drop-down list below contains the names of
all the drivers that are installed on your spstem.

Dewice driver:

Mitsubishi Ethemet -

™ Enable diagnostics

< Back Mest > Cancel Help

[Devices Advanced

|~

Ready

El
\Clients: 0 |Active tags: 0of O |

Figure 14 — Adding Device Driver to the Channel

e Define the Network Adapter of the system where the OPC Server is running on. In this example, the interface

card is at IP address 192.168.1.5.

- [a]]

Hew Channel - Hetwork Interface

Thiz channel is configured to communicate over
a netwark, You can select the network. adapter
that the driver should use from the list below.

Select 'Default' if pou want the operating system
to choose the netwark adapter for you.

Network Adapter.
EBroa t

< Back | Mext > I Cancel Help

M Devices Advanced

=

Ready

]l
(Clients: 0 Active tags: 0of 0 /a

Figure 15 — Selecting the Network Adaptor where the OPC Server is Running

MITSUBISHI ELECTRIC
AUTOMATION, INC.

Part3-10

Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e At the “Write Optimization” screen, a user can determine which method should be used to give the optimized
performance of the server for his system. In this example, default values are used.

‘0u can control how the server processes wites on
this channel. Set the optimization methad and
wiite-to-read duty cpcle below,

Mate: Wiriting only the atest value can affect batch
processing of the equivalent,
- Optimization Method

 write all values for all tags

T Wwiite only latest value for non-boolean tags

@ \white only latest valus for sll tags

- Dty Cych

Perform (10 “_!: wirites for every 1 read

< Back I MNest > | Cancel Help |

MM Devices Advanced -

Ready Clents: 0 |active tags: 0of 0 ’ﬁl

|~

Figure 16 — Selecting Optimization Method

e Click the “Finish” to complete adding the Channel.

S I ERX | BE2hEE

Tag Name

Hew Channel - Summary

1f the following information is correct cick Finish' ta
save the settings for the new charnel

Name: PackML
Dewice Driver: Mitsubishi Ethernet
Diagnostics: Disabled

MNetwark Adapter:
Broadcom Net<tem... [192.168.1.5]

“wirite Optimization:
tWirite only latest value for all tags
10 wiites per read

< Back | Finish I Cancel Help

M Devices Advanced

]l
Ready (Clients: 0 Active tags: 0of 0 /a

=

Figure 17 — Completing OPC Channel Configuration

MITSUBISHI ELECTRIC Part3-11 Custom Solutions Center
AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

6.2 Adding Devices

After the channel is defined, devices that need to be monitored can be added to the channel. Click to add a device

<= KEPServerEx - [untitled.opf 7]

File Edit Wiew Users Tools Help
DS HE il o & Y

= @ Tag Marnne
Click ko add a device.

M Devices Advanced
Ready

|~

[

Clients: 0 |Active kags: 0of O

Figure 18 — Adding Device to Channel

e The configuration of the Built-in port is done first with the device name of “QPLC Builtin Port”

DEE M@ » $BEX BALES
=1 424, PackML

Tag Mame:
Al click to add a device.

A device name can be fram 1 to 256 characters
in length.

Mames can not contain perinds, double
quatations ar start with an underscore,

Device name:
PLC Builtn Port
Nest » Cancel Help
M Devices Advanced < >
Ready Clients: 0 Active tags: Oof0
Figure 19 — Naming the Communication Device
¢ MITSUBISHI ELECTRIC Part3-12
A% AUTOMATION, INC.

Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Select Device Model to be “Q Series” from the drop down list:
DEHPMEaE -t REX pahbo
1= 42%, PackML Tag Mame
R click ko add & device.
Hew Device - Model
The device you se delfing nes adevine
driver that supports more than one model. The
list below shaws all supported maodels.
Select a model that best describes the device
ru are defining.
< Back I MNest > I Cancel Help
MM Devices Advanced & ¥
Ready [Clients: 0 |Active tags: 0of 0 /
Figure 20 — Selecting the Mitsubishi Device Type
e Define the Device ID to be “192.168.1.40:255.”

(0]

The normal format of configuring the Device ID for a QPLC in the Kepware server is “IP Address :

Network Number : Station Number” However, the Built-In port can not be addressed using network
number and station number. Thus, it is assuming the network number to be zero (thus omitted from
the Device ID format) and a general station number of 255.

B =N

=478, PackML

M Click to add & device.

[The device you are defiring may be mulidiopped as
part of & netwark of devices. I order to communicate
wih Hhe device, it must be sssigned a unique 1D

‘our documentation for the device may refer to this as
a"Network D" or "Network Addess."

Device 1D

[192168.1.40:255

< Back Nest >

Cancel Help

A Devices Advanced | 5

8 L ¥

Ready

iclients: 0 |Active tags: Dof O y

Figure 21 — Entering the Device ID

MITSUBISHI ELECTRIC
W AUTOMATION, INC.

Part3-13

Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e The user can configure the timing parameters to optimize the communication performance. In this example,
default values are used:

DeEd:2iM-
1= 42%, PackML
A click ko add & device.

Hew Device - Timing
[The device you are defiring has communications ting
\parameters that you can configure.
Cornect fmeout: [§ =] seconds
Request timeout: W milliseconds
Fail after |3 A_{; successive timeouts
Inter-request delay: | Jj miliseconds

L

< Back MNest > I Cancel] Help

MM Devices Advanced

Ready

|~

¥

Clients: 0 |Active tags: 0of0 y

Figure 22 — Selecting the Timing Parameters

e A user can also enable the auto demotion of a device when communication is lost. One should configure this
parameter according his application needs. In this example, auto-demotion is not configured.

DeE @ 2l (osBEX LY
=428 PackML Tag Name
: im] Click ko add a device,

Hew Device - Auto-Demotion

You can demate a device for a specific period upon
\communications Failures. During this time no read request
[writess if applicable] wil be sent to the device. Demoting &
[ailed device will prevent stalling communications with other
\devices on the channel.

™ Enable auto device demotion on commurication failures

< Back MNewt > l Cancel Help

M Devices Advanced

I~
I

Ready Clients: 0 |Activetags: 0of 0
Figure 23 — Configuring Auto-Demotion Function
¢ MITSUBISHI ELECTRIC Part3-14 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e The default of the device is set at First Word Low. This configuration is correct for Q PLC. Ensure the check box
is selected.

DEH PN ~sREX[pdube
1= 42%, PackML Tag Mame
A click ko add & device.

Hew Device - First Word Low,

The state of the check bos below wil determine
how the Mitsubishi Ethernet diver interprets 32
bit walugs

Mfhen the bow is checked, the first register used

to constuct a 32 bit value will be treated as the
lows wiord.

Iv First word low

< Back l MNest > I Cancel Help

MM Devices Advanced

Ready Clients: 0 |Active tags: 0of0 .

|~

B

Figure 24 — Selecting Word Order

e Select the IP protocol to TCP/IP and the port number to be 20482 (i.e. 0x5002) as configured earlier for the
Built-in Ethernet port in Section 4.3

DEHPMOLE w2 X|pAWB
] 4% PackML Tag Mame
* il Click to add a device.

Hew Device - Communications Parameters
Select the Ethemet protacol used by the device.

Set the port number the device is configured to
use. The default port is 5007 for TCPAP and
5000 for LIDP.

1P Protocol: TCPAP B
Port Mumber: 20482

< Back I HNext > I Cancel Help

M Devices Advancedi & 3
Feady Clients: 0 |Ackive tags: 0of 0)
Figure 25 — Configuring IP Protocol and Port Number
¢ MITSUBISHI ELECTRIC Part3-15 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Select the proper time synchronization with the PLC per application requirements. In the example, no
synchronization method was used.

=478, PackML Taq Nams
M Click to add & device.

[Set ime interval for synchronizing the PLC time
iwwlh the System time.

Set the synchronization method and Absoluts
1Spnc Time or Spnchronization Interval

Mote: This function is only available for § Series.

Synchionization Method: | Disabled -

Absolute Sunc Time:

Synchionization Interval V-E minutes

< Back Meat > | Cancel | Help

A Devices Advanced | <

Ready

¥
ilients: 0 |Active tags: Dof 0 % |

Figure 26 — Selecting Synchronization Method with PLC

Select “Finish” to complete adding the device.

- sBEX|pALES
=422, PackML Tag Name
i im] Click to add 5 device,

Hew Device - Summary

If the following settings are conect click Finish to begin
uging the new device,

Mame: QPLC Builin Part A~
Model: O Series =
ID: 192.168.1.40:255

Cornect Timeout: 3 Sec.

Fiequest Timeout: 250 ms

Fail after 3 attempts

Auto-Demation: Disabled B
First \wiord Low: Enabled

Frotocol: TCP/P

%

< Back | Firish l Cancel Help

M Devices Advanced | k|

Ready

v
\Clients: 0 |Active tags: 0of O ’ﬂ

Figure 27 — Completing the Adding Device Process

MITSUBISHI ELECTRIC Part3-16 Custom Solutions Center
W AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

7 Kepware Tags Implementation

OPC tags can be added manually one at a time. With the large number of tags for the PackTags implementation, it is easier
to create the tags in Excel worksheets and import them to the OPC server. For the PackTags implementation, all OPC tags
are created in Excel and be imported.

7.1 Creating the Tags

Three tag groups are created for each device for easy monitoring and sorting. The three tag groups are named
“Command”, “Status”, and “Admin.”

e Right click on a Device and select “New Tag Group...”

<¥ KEPServerEx - [untitled.opf *] Q@ng

File Edit Wiew Users Tools Help

MEEE GG Y

= 7 PackiL Tag Name
nfoPLE Builzeoe &7 Click to add a static tag. Tags are not required, but are browsable by GPC

[oPLcEriy Mew Tag Grocp...
New Tag..

IporE £S5V,

Export CSV..
Cut Chrl4+
Copy Chr+C

Delete Del

Froperties...

MM Devices Advanced < 5

Viwedit the properties of the selected object. Clierts: 0 |Active tags: 0 oF 0

Figure 28 — Creating Tag Groups

e Define the Group Name to be “Command.”

DEEd Pl OoF s BREX Bl
=67 PackiL
{0 QPLE Builtn Port astatictag, Tags are not required, but are browsable by OPC dlients,

Hew Tag Group

e]
Mame: [Command
n Cancel
_ |
M Devices | (5] Advanced < .
Ready Clients: 0 Active tags: Ocf 0

Figure 29 — Adding the Command Group

0 MITSUBISHI ELECTRIC Part3-17 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Repeat the steps and define Tag Groups.

== KEPServerEx - [untitled.opf, ¥] (Demo Expires 01:31:14)

Eile Edit Wiew Users Tools Help

D d @il ho =

® &

= ? PackML
= PLC Buikin Port
(22 Admin
[Command
£ status

M Devices Advanced

astatickag. Tags are nok required, but are browsable by OPC clients.

Ready

Clients: 0 Active kags: Dof O

Figure 30 — Adding Other Tag Groups

e Right click on one of the groups and select “Import CSV...” to import the tags for the particular group.

<t KEPServerEx - [untitled.opf *] {Demo Expires 01:29:41

Eile Edit Wiew Users Toadls Help

D 2l Lo ©

EX
&2

-2 PackML

=-ff QPLC Buikin Port

&3 o
[0 Gy Mew Tag Group...

[Stabu Mew Iag..
Expart CSV.., §
Cut Crrl+x
Copy CtrC
Delete Del
Properties. ..

M Devices Advanced

a skatic tag. Tags are nok required, but are browsable by OPC clients.

Import tag data from a .CS¥ file.

Clients: 0 |Active tags: 0of O

Figure 31 — Importing Tags from CSV Files

‘ MITSUBISHI ELECTRIC
A7 AUTOMATION, INC.

Part3-18

Custom Solutions Center

Mitsubishi PackML Template Implementations — LO2 Release
Part 3: PackTags Design and Implementation

e Select the proper tag files and complete the import process for this group. Repeat the same steps to import
the rest of the tags.

- [5]x]|

DElE ML aE o> dBEX | BALE S
=GP PackmL
=-{M QPLC Builtin Port astatic tag, Tags are nok required, but are browsable by OPC clients,
3 Admin
(23 Command
(27 Status

Import from CSY @
OPC Projects Kepware L] ¢ =5 Bl

BlopLc cMD vacsy Bl QPLE CMD.csv

Bl qpLC DM YZ.cov B QPLC CMD Test.csw
BElopLcsTavzesy B Testtcov

Bl oPLC ADM Wa.csv B QPLC CMD Y2 csv

B opLC ADM W3.csv BELQPLC ADM.cav

HopcsTAY3.csy SR QPLC STA.csw

File name: [OPLC ADM Vi csv Open
Files of tvper [C5W Files [esv] -l Carcel

M Devices Advanced < | -

Clients: 0 |Active tags: 0of O

Ready

Figure 32 — Selecting the File to Import

0 MITSUBISHI ELECTRIC Part3-19 Custom Solutions Center
A7 AUTOMATION, INC.

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

Content

R 101 o To Vot o] o TSP PR PO PRORO
2 Overview of PackML State and Mode Core FUNCEION BIOCKSc..covieiiiiiinienieiieicec e e
3 Function Block: PackML_MoOdeStateManager.......cccuuiiuiiriiiiiieeeiee sttt sttt ettt ettt ettt e et e st esbeesateesaeessbeeenneesaneas
20 A B 1= 1T 1o [ISP P PP OPRSPOTPRRIN
3 I SV o Vot o ol =] [o el [@] o1=] - | A o] s L RSP URPPROt
3.3 FUNCtion BIOCK LOCAI Vari@bIscoiiiiiiiiiiieeieet ettt ettt st st st e st e s abeesneee e eanee
4 Function Block: PaCkML _MOQESTatETIMES. ...cccciieieeiiee e ciiee e ettt e eecte e e et e e e stbe e e e e taeeesabaeeesbaeeeessteeessasaeasseesanssaeesanseseernsanann
o R B T =Yl o) i o o PRSP
4.2 Timer_32Bit_SeC FUNCHION BIOCKueiiiiiiieeeiii ettt e e et e e et e e st e e e e et e e e esnaeeesasaeeeesteeesnsneeenseeeansenn
4.3 FUNCLION BIOCK OPEIAtIONS ...eeiiieeiiiieiiteeeiee ettt sttt st e e sa e st esb et e s bt e sttt s bt e sabeesabeeeaseesabeeenbeessbeenseeebeeens sabeesnneesas
4.4 Function BIOCK LOCAl Vari@bhlesooiieiiiiiiieeee ettt et sttt st s bt s e st e sabe e s st e e saeeesaeeeberee e
5 Example Use of the PaCkIMIL FUNCLION BIOCKS........cccuiiiiiiiieeeiie ettt ettt e ettt e e et e e etae e e e e abeeeeeataeeeensaeeeearaeaanns
TN R L T =Y 72 T oY o I o= [0] o] 1P PURRROt
5.2 Example of Calling FUNCLION BIOCKSuviiiiiiecciiee ettt e e e e et e e e ette e e s bt e e e e tbeeesnbaeesasbeeeestaeesnnsaeeennrenann
@ MITSUBISHI ELECTRIC Part 4 - i Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 4 —ii Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

1 Introduction

The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackML specification in an iQ PLC.

PackML specification is a part of the overall OMAC PackML standard and consists of PackTags and PacKML State Engine
definitions. PackTags defines a set of named data elements used for open architecture, interoperable data exchange in
automated machinery. PackTags are useful for machine-to-machine (inter-machine) communications; for example between
a Filler and a Capper. PackTags can also be used for data exchange between machines and higher-level information systems
like Manufacturing Operations Management and Enterprise Information Systems. PackML State Engine defines common
procedural programming structures, consistent mode and state definitions that drive a common look and feel between
equipment.

The Mitsubishi design of PackTags is documented in Part 3 of this Users Guide. This document describes the
implementation of two Mitsubishi PackML core function blocks that handle the PackML Machine State Transitions, Mode
Manager, and State and Mode Timers.

The function blocks are implemented using Mitsubishi GX Works2 Structured Ladder Programming language and label
programming methods.

2 Overview of PackML State and Mode Core Function Blocks

There are two Mitsubishi PackML State and Mode core function blocks:
e PackML_ModeStateManager
e PackML_ModeStateTimes

The two key functions of the PackML_ModeStateManger are: (1) transitioning the machine from current state to the proper
next state based on external commands and state completion status, and (2) handling the transitions of machine modes.
The PackML_ModeStateTimes (1) accumulates the current and accumulated time of the machine in each mode and state,
and (2) provides the timer values and stores them in appropriate PackTags.

These function blocks, together with their associated global and local labels, are packaged in the overall Mitsubishi PackML
OEM Implementation template project.

3 Function Block: PackML_ModeStateManager

3.1 Description

The PackML_ModeStateManager handles the state and mode transitions of a unit machine according to the State and
Mode Models defined in the OMAC PackML specification.

To use this Function Block properly in an OEM program, one should ensure the following requirements are satisfied:

1. When an OEM programs a machine to use the PackML Function Blocks, it should initialize the machine to start
up with the machine mode set to 3, the Manual Mode condition, and the state to be at the “Stopped” stage
during the first scan of the PLC.

2. When an OEM designs the machine, he should determine how many modes the machine will have and how
many and what states each mode should have. The selection of modes and states should follow the OMAC
PackML Standard when appropriate. Each mode, when defined, should have at least three states: Stopped,
Execute, Aborted.

3. Since not all states are configured for all modes, the OEM is responsible for setting up which states are not
configured for each mode. He is also responsible for setting up at which states the machine is allowed to
change mode. Refer to Part 5 Section 5.1.1 3.3 of the Users Guide for more details.

‘ MITSUBISHI ELECTRIC Part 4 —Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

4. The OEM is also responsible for configuring the names of all modes and states. Refer to Part 5 Section 5.1.1 of
the Users Guide for more details.

5. When this FB is used in an OEM program, it is preferable that the FB is always enabled.

6. The label “PackML” is a structured data type and its members should be properly defined before the FB is
called.

3.2 Function Block Operations

The main functions of the FB consist of (1) managing state transitions, (2) managing mode transitions, and (3) updating
current mode and state information.

When the FB is first call, it determines the current state of the machine and whether there is a valid command to
transition the machine to a new state. If a valid command is set, the machine will be transitioned to the valid new state
and the corresponding output bit will be set to reflect the new current state.

The FB will then examine any mode change command is set. It will verify the machine is in the proper mode and state
that a change of mode is allowed. If the mode change command is not valid, the ModeChangeNotAllowed output will
be set high for 3 seconds and then reset. The mode and state of the unit machine will remain in the current mode and
state respectively.

The FB finally updates the current mode and state information and exit to the FB calling programs.

The PackML_ModeStateManager Function Block is shown in the figure below:

FPackiL_tdodeStatebd anager

— EM EMO —
— Cmdkaode FB_Clearing —
— CmdRezet FB_Stopped —
— CmdStart FB_Starting —
— CmdStop FBE_ldle —
— CmdHaold FE_Suspended —
— Cmdnhold FE_Execute —
— CmdSuzpend FB_Stopping —
— Cmdnsuzpend FE_aAborting —
— Cmd&bort FB_Aborted —
— CmdClear FE_Holding —
— CmdStateComplete FE_Held —
— CfgRemoteCmdEnable FBE_UnHalding —
— InpRematetodeCmd FE_Suspending —
— |npRemotetd odeCrmdChangeR equest FB_UnSuszpending —
— |npRemaoteStateCmd FE_Reszetting —
— |npRemateStateCmdChangeR equest FE_Completing —
FB_Complete —

FE_ModeChangeMattllowed —

Figure 1 PackML_ModeStateManager Function Block with Inputs and Outputs
3.3 Function Block Local Variables
The local variables that are used by the FB are described in this section. There are three types of local variables:

e Input Variables — The values of these variables need to be properly set / defined by connecting proper logic or
variable inputs to the FB before execution.

e Output Variables — The values of these variables will be properly set or defined after the execution of the FB is
completed. If a user of the FB can chose not to use the results of the output variables.

e Variables — Those labels used internally in the FB that will not be exposed externally.

¢ MITSUBISHI ELECTRIC Part 4 - Page 2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

Variable Type | Variable Label Data Description
Type
VAR_OUTPUT FB_Clearing Bit When the bit is set, the Machine is in the “Clearing” State
VAR_OUTPUT FB_Stopped Bit When the bit is set, the Machine is in the “Stopped” State
VAR_OUTPUT FB_Starting Bit When the bit is set, the Machine is in the “Starting” State
VAR_OUTPUT FB_ldle Bit When the bit is set, the Machine is in the “Idle” State
VAR_OUTPUT FB_Suspended Bit When the bit is set, the Machine is in the “Suspended” State
VAR_OUTPUT FB_Execute Bit When the bit is set, the Machine is in the “Execute” State
VAR_OUTPUT FB_Stopping Bit When the bit is set, the Machine is in the “Stopping” State
VAR_OUTPUT FB_Aborting Bit When the bit is set, the Machine is in the “Aborting” State
VAR_OUTPUT FB_Aborted Bit When the bit is set, the Machine is in the “Aborted” State
VAR_OUTPUT FB_Holding Bit When the bit is set, the Machine is in the “Holding” State
VAR_OUTPUT FB_Held Bit When the bit is set, the Machine is in the “Held” State
VAR_OUTPUT FB_UnHolding Bit When the bit is set, the Machine is in the “Unholding” State
VAR_OUTPUT FB_Suspending Bit When the bit is set, the Machine is in the “Suspending” State
VAR_OUTPUT FB_UnSuspending Bit When the bit is set, the Machine is in the “UnSuspending” State
VAR_OUTPUT FB_Resetting Bit When the bit is set, the Machine is in the “Resetting” State
VAR_OUTPUT FB_Completing Bit When the bit is set, the Machine is in the “Completing” State
VAR_OUTPUT FB_Complete Bit When the bit is set, the Machine is in the “Complete” State
When the bit is set, the requested new mode is not valid and the
h " . “Mode Change” command is not allowed. The machine will remain in
VAR_OUTPUT FB_ModeChangeNotAllowed Bit the current mode and current state.
This bit will remain on for 3 seconds and then reset itself.
The value of the new mode the machine will transition to. If the
CmdMode input value does not change, no mode change will occur
Double and the machine will remain in the current mode.
VAR_INPUT CmdMode i)
Word The valid values of CmdMode are 0 — 31. The FB allows up to 31 valid
modes and “0” being “NoMode”. However, the user programs should
have proper logic in place to handle all valid machine modes.
Setting this bit, the user program indicating the “Reset” command has
been received and the machine should transition to the proper next
VAR_INPUT CmdReset Bit state. If the current machine state does not support the “Reset”
transition, the machine will remain in the current state and the “Reset”
command will be ignored.
Setting this bit, the user program indicating the “Start” command has
been received and the machine should transition to the proper next
VAR_INPUT CmdStart Bit state. If the current machine state does not support the “Start”
transition, the machine will remain in the current state and the “Start”
command will be ignored.
Setting this bit, the user program indicating the “Stop” command has
been received and the machine should transition to the proper next
VAR_INPUT CmdStop Bit state. If the current machine state does not support the “Stop”
transition, the machine will remain in the current state and the “Stop”
command will be ignored.
Setting this bit, the user program indicating the “Hold” command has
been received and the machine should transition to the proper next
VAR_INPUT CmdHold Bit state. If the current machine state does not support the “Hold”
transition, the machine will remain in the current state and the “Hold”
command will be ignored.

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 4 —Page 3

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

Variable Type

Variable Label

Data
Type

Description

VAR_INPUT

CmdUnhold

Bit

Setting this bit, the user program indicating the “UnHold” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the “UnHold”
transition, the machine will remain in the current state and the
“UnHold” command will be ignored.

VAR_INPUT

CmdSuspend

Bit

Setting this bit, the user program indicating the “Suspend” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the
“Suspend” transition, the machine will remain in the current state and
the “Suspend” command will be ignored.

VAR_INPUT

CmdUnsuspend

Bit

Setting this bit, the user program indicating the “UnSuspend”
command has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“UnSuspend” transition, the machine will remain in the current state
and the “UnSuspend” command will be ignored.

VAR_INPUT

CmdAbort

Bit

Setting this bit, the user program indicating the “Abort” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Abort”
transition, the machine will remain in the current state and the “Abort”
command will be ignored.

VAR_INPUT

CmdClear

Bit

Setting this bit, the user program indicating the “Clear” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Clear”
transition, the machine will remain in the current state and the “Clear”
command will be ignored.

VAR_INPUT

CmdStateComplete

Bit

Setting this bit, the user program indicating the “State Complete”
condition has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“State Complete” transition, the machine will remain in the current
state and the “State Complete” command will be ignored.

VAR_INPUT

CfgRemoteCmdEnable

Bit

When this bit is set, the machine is allowing state and mode transition
commands to be issued remotely in addition to the Command Bits to
the FB.

VAR_INPUT

InpRemoteModeCmd

Double
Word

This input contains the Remote Mode Command value and is the value
of the new mode the machine should transition to. If the input value
does not change, no mode change will occur and the machine will
remain in the current mode.

The valid values are 0 — 31. The FB allows up to 31 valid modes and “0”
being “NoMode”. However, the user programs should have proper
logic in place to handle all valid machine modes.

VAR_INPUT

InpRemoteModeCmdChangeRequest

Bit

When this bit is set and the machine is allowing mode transition
commands to be issued remotely, the mode change command will
then be evaluated and accepted if it is valid.

‘ MITSUBISHI ELECTRIC
A7 AUTOMATION, INC.

Part 4 - Page 4 Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

Variable Type | Variable Label Data Description
Type

This input contains the Remote State Command value and is the value
of the new state the machine should transition to. If the input value
does not change, no state change will occur and the machine will
remain in the current state.

The valid State Command values are defined as follows and others are
ignored:

: Reset

: Start
Stop
Hold
UnHold
: Suspend

Double

VAR_INPUT InpR teStateCmd
_ npRemoteStateCm Word

: UnSuspend
: Abort
: Clear

© ® N U D WN R

When this bit is set and the machine is allowing state transition
VAR_INPUT InpRemoteStateCmdChangeRequest Bit commands to be issued remotely, the state change command will then
be evaluated and accepted if it is valid.

4 Function Block: PackML_ModeStateTimes

4.1 Description
The PackML_ModeStateTimes accumulates the timer values for all configured states and modes of a unit-machine. It

also accumulate the overall machine time since the last reset. The time unit of each timer is “second,” and each timer
will roll over at 900,000,000 seconds (i.e. 10416.67 days, or 28.5 years).

When any of the timers is rolled over, a TimeRollOverWarning bit will be set. However, the OEM programs will have to
check the timers of current mode and current state to determine which timer has overflown.

The PackML_ModeStateTimes FB utilizes a custom function block “Timer_32Bit_Sec” FB to accumulate current mode
and state time. The function of this FB is also described here.

The PackML_ModeStateTimes function block should be used right after the PackML_ModeStateManager function
block in order to accumulate the time values of the current mode and state properly.

4.2 Timer_32Bit_Sec Function Block

To use the timer, define the beginning value of the timer by inputting the value to the “Start_Timer_Value_FB.” When
the Timer_Enable_FB is set high, the timer will accumulate in seconds and the current timer value can be read from the
Current_Timer_Value_FB label. The maximum value of the timer is 900,000,000 seconds. It will overflow to zero when
it passes the maximum value.
_ Timer_32Bit_Sec _ |
- Start_Timer_*alue_FB Current_Tirmer_‘alus_FB ’7

= Timer_Enable_FE
- Timer_Reset FB

Figure 2 Timer_32Bit_Sec Function Block

If the Timer_Enable_FB bit is off, the timer will hold the current value and shown in Current_Timer_Value_FB. The
timer will be reset to the Start_Timer_Value when it is enabled and the Timer_Reset_FB bit is high. It will continue in
the Reset State until the Timer_Reset_FB bit is off.

0 MITSUBISHI ELECTRIC Part4 - Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

5

Variable Type | Variable Label Data Description
Type
. Double . .
VAR_OUTPUT Current_Timer_Value_FB Word Contains the current timer value.
. Double . s) . .
VAR_INPUT Start_Timer_Value_FB Word Contains the initial value of the timer before it starts accumulating.

VAR_INPUT Timer_Enable_FB Bit Enables the timer to start accumulating.

Resets the timer value to the Start Timer Value. The reset is effective

VAR_INPUT Timer_Reset_FB Bit . .
only when the timer is enabled.

4.3 Function Block Operations

The main functions of the FB consist of (1) managing the mode timer and updating the values of current of
accumulated time of the mode, (2) managing the state timer and updating the values of current and accumulated time
of the state, and (3) managing the timer of the overall machine and updating the values of the machine timer since last
reset. The function block is shown in the figure below:

FackhL_ModeStateTimes

- EN EMDO !—
= CrmdRezetCurenttd odeT imes TimeRoll0ver armingFB
- CrndRezetdlTimes |_

Figure 3 PackML_ModeStateTimes Function Block

4.4 Function Block Local Variables
The local variables that are used by the FB are described in this section.

Variable Type | Variable Label Data Description
Type
VAR_OUTPUT TimerRollOverWarningFB Bit Irlsa:ty of the timers over flows, this bit will be set until the timer is
VAR_INPUT CmdResetrCurrentModeTimes Bit When thIS. bit is set, the current mode tlrr.ler values will be cleared to
zero and timers of all states of the mode will also be cleared to zero.
VAR_INPUT CmdResetAllTimes Bit When this bit is set, all timer values, including the overall machine

timer (i.e. TimeSincelLastReset) will be cleared to zero.

Example Use of the PackML Function Blocks

The following example programs demonstrate how these function blocks can be used in an OEM program. The OEM
PackML Implementation Template project will be described in Part 6 of this Users Guide and will have more complete
program routines describing the use of PackML Core Function Blocks.

5.1 Initialization Example
The following rungs only need to be executed on the first scan of the PLC after power-up. They initialize the machine
modes and states for proper operation.

The program file can be register to run under “Initial Program” area of Program Setting in the Project Tree as shown
below:

0 MITSUBISHI ELECTRIC Part 4 - Page 6 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

+ Parameter
43} Inteligent Function Module

¥ Global Device Comment

—|- g Program Setting
=I-{{H} Initial Program
= Mainln

+|- i EMOO_Init
+)- A EMO1_Init
=2 _Init
=%} PackML_UnitMachine_Setlp
8] Program
g5 Local Label
rogram
"m Standby Pro
“E Fixed Scan Program
+-[H] No Execution Type
%% pou

+ Device Memory
Device Initial Value

T

Figure 4 —Example of Setting the Program for Initial Scan Only

1. In this example, there are five valid modes: Mode 1 — Producing, Mode 2 - Maintenance, Mode 3 — Manual, Mode
16 — User Defined 1, and Mode 17 — User Define 2. Rung 2 set up these mode names in PackML_ModeNames. If
there are additional modes for the machine, the user needs to set up additional mode names and logic to populate
the proper labels.

Define the names of the PackML Modes available to this machine ‘

SMOV. | SMOV. ‘ SMOV. ‘
EN~ ENO EN ENO EN" ENO
"Producing"—_8 d l,—Fa-:kl AL_ModeNames[1] "— 8 d ‘,—F‘ackr.WLJ lodeNames[2] "Manual"— s d —PackML_ModeMNames[3]
SMOV. | SMOV. ‘ SMOV. ‘
EN~ ENO EN ENO EN" ENO
"UserDefine1"— s d l,—Fa-:kl IL_ModeNames[16] "UserDefine2" — s d ‘,—F‘ackr.WLJ lodeNames[17] "NoMode" — s d —PackML_ModeMNames[0]

Figure 5 — Example of Setting PackML Modes for a Unit Machine

2. The following rung sets up all the state names in PackML_StateNames.

Dafine the Fiha PackL Wi ik
SMOV. SMOV SMov
EN ENO EN ENO EN ENO
Claanng' — 8 d KML_StatsNames{1] “Stopped” — 8 4/ ML_StatsNames(] *Staring” — 8 | —FackML_Statehames[3)
sMov v
EN ENO EN ENO EM ENO
“Ielle” s d Marmesid] “Suspended” — 8 d M heMames[S] “Execuie”— P ockML_Stelel 5]
MOV v MoV
[EN EnO EN ENO EN ENO.
“Sopping” E | d- Mamas[d] “Abanng” 5 d atelama s8] “Abaried | | d kML _StaleMNames[d]
v v SMoV
EN ENOD EN ERD EN ENO
Holding" — & d kML _Seatshiamas]10] Hald® s d kML _SeateMamesf1T] Unholdng s AP ackML_StalsNames[12]
oV MOV,
EN ENO EN ENO EN ENO
“Suspending” — 8 d; ML_Statebames(13] “Unsuspanding) d KL SeatNames[14] Fesutng s d—FackML_Stashiamen(15)
v
EN ENO EN ENO
“Complebng — 8 dr ML_StateMiarmes[15] “Complels” — 8 o

Figure 6 - Example of Setting PackML States for a Unit Machine

0 MITSUBISHI ELECTRIC Part 4 - Page 7 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

3. The following rung configures the states in each mode that mode transitions are allowed.

| Canfgare th
SET SET SET SET
EN ENO EN ENO EN ENO 1
dl 12] 4 114] d s d KML_chgMade Trar]
SET SET
EN ENO EN ENO
d 1) 4 117)
SET SET SET SET
EN ENO EN ENO EN ENO EN ENO
d kbl _chgMade Transitionsf2,2] d 124] d PackML_cigMode T sions[29] d—PackML_clModeTea J211]
SET SET SET
EN ENO EN ENO EN ENO
d KML_clgMade Transitians[3.2] 4 a4 d [33)
SET SET SET SET
EN ENO EN ENO EN ENO EN ENO
d KML_ctgMade Transitans(16,2) 4 [16.5) d [16:5] d} [16.11)
SET SET SET SET
EN ENO EN ENO EN ENO EN ENO
d KML_cigMade Transitians[17.2) 4 {175} B—PackML_clgMode Transitians[17.9) Bl PackML_chaModsTea n7.11)
SET SET SET SET
EN ENO EN END EN ENO - EN ENOD
d 0.2 d 104] d. ML_clgModaTranstions]0.5] Bl—PackML_chMedaTea o3
SET SET
EN ENO EN END
d [0.17] d 017

Figure 7 - Example of Setting States that Mode Transition are Allowed

4. The Following rung configures the states that are disabled in each mode.

[of J—--_ v sta disable JFDlﬂlllﬂ.l.- #2 i is notused |
SET SET SET SET
t EN ENO EN ENO EN ENO - EN END
d s kMIL_clgDirsableStates[2 5] 4 kML _clgDisabieStales[213) d ekML_cloDhsableStales[2.14] d LchML_cigDisableSlates[L.15
SET
LEN ENO -
d s 2.17)
SET SET SET
EN ENO EN ENO EN ENO | EM ENO
4 s d (e RE] d 3,14 4 PI6
SET SET SET SET |
LEN ENO EN END EN ENO - EN ENO
d sekML_cigl bleSmtsaf317] d ackML_clgDisablaSimiesf3. 10) d} ackML_cligDisablaSimies3.11] d ackhiL_cigDisal 1=iea[3,12]
T SET SET
t EN ENO EN ENO EN T - -
e 3]16.1] d pekML_clgl = Siales|16.4) d - sckML_cigDisableStales16.12] d} b [16,74
SET SET
EN ENO EN ENO
d 16.17] d {16.15]
SET SET SET SET
EN ENO EN ENO EN ENO EN
a ny d 74) a4 stes[17.12] d 1es[17.16]
SET SET
EN ENOD - EN END
d ekML_cigDisatiaStmtas{17.17] il PackhL_cigDissbisStates[17.15]

Figure 8 - Example of Setting States that are Disabled in Each Mode

5. The following rungs initializes the machine to Mode 3 (Manual Mode) and State 2 (Stopped) before execution, and
updates the current mode name and state name in the proper labels.

0 MITSUBISHI ELECTRIC Part 4 —Page 8 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 4: PackML Core Function Blocks

Setthe initial Mode and State ofthe Unit Machine to Manual Mode and Stopped State |

en ™ tvo ‘ en ko ‘
K3—s d|—sta_UniibodeCurrent K2— d ’—‘,—‘Slai‘ilaleiluuenl
e Eno ‘ N 9 ‘
K3—s d rﬁpacw 1L sb&ModeCurrent K2— d rﬁpacm 1L Sts_StateCurrent
DMOVP ‘
KS—H’;F‘@:H IL CmdMode

Display the proper screen based on the Mode Setting |

MOV ‘
ENTENO -
unentName PacklML_StaleNames[Sta_StateCurrenf —.s d|—Sta_StateCurreniName

PackML_M: ames[Sta_UnitMod

PackML CmdMode — |8 —GOT_Screer

Figure 9 - Example of Setting Initial State and Mode of the Unit Machine

5.2 Example of Calling Function Blocks

1. The following rung calls the PackML_ModeStateManager function block to start the PackML operation. One should
realize that the variables connected to the inputs and outputs of the FB members of the label PackML with the
structured data type. The OEM programs should properly set up these values before the function block is called.

PackML_ModeStateManager_1
PackML_MadzStatebanager
EN END |~
PackML Cmidhiode —— CimcMode FB_Clearing —Fack L Statellesring
PackML CmdReset— CmeReset FB_Stopped —PackML StateSiopped
PackML CrodStart— | CmeStart FB_Starting |—PackML StateStarting
PackML CrdStop —— CmdStop FB_Idle —PackML Statelde
PackML CrndHold — EmeHold FB_ Suspended —FPackML StaleSuspended
PackML CrndUnhold — Emelinkold FB_Fsecute —PackML StateEvscute
PackML CrdSuspend — CmdSuspend FB_Stopping —FackiL StateSiopping
PackhL. CmdUnsuspend — | Cmdlnsuspend FB_Aborting — P ackML Statedborting
PackML Crdtbort—— Cnddbort FE_Abotted |—FPackhL Statedbiorted
PackML CmdClear— CmdClear FB_ Holding —PackL. StatzHolding
PackML. CmdStateComplete — | CmdStateComplete: FB_Held —PackML StateHzld
PackML cfa_Fiemot=CrdE nable—— CigRemateCmdEnable FB_UnHalding ——PackhL StatelinHolding
PackML Ing_RemoteMod=Cmd — InpRemotebadeComnd FB_ Suspending —FackML StateSuspending
PackML Inp_RemoteModeCmdChangeftequest — InpRemoteMadeCmdChangeRequest FB_UnSuspending |—PackML StateLnSuspending
PackhLInp_Remate5tateCrnd — InpRemateStateCmd FB_Resetiing ——FackiL StateReseting
PackML.Inp_RemoteStateCmdChangeRequest— InpRemotsStateCmdChangeRequest FB_Completing ——FackhL. StateCompleting
FE_Complete —PackHL StatsCamplete
FE_ModeChangshatalawed —Fack L bodeChangeN ciélowed

Figure 10 — Calling the PackML_ModeStateManager Function Block

2. The PackML_ModeStateTimes function block is then called to start accumulate timer values.

PackML_ModeStaleT mes_1
PackML_ModeState Times \

EN END ~
CincResstCurenitode T mes TimeRal0verw/amingFs (—T meFiol Dvat/aming

M102 CRessthlTimes I

I ¥

M103

I ¥

Figure 11 - Calling the PackML_ModeStateTimes Function Block

0 MITSUBISHI ELECTRIC Part 4 - Page 9 Custom Solutions Center
A% AUTOMATION, INC.

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

Content

R 101 o To Vot o] o TSP PR PO PRORO 1
2 Low Cost PackML Template System Hardware ArChitECtUIE.......ccuiiiiciie et e e et e e et e e e eaaae e e snaeeeeas 1
3 Low Cost Mitsubishi PackML Template Project StruCtUre OVEIVIEWocueeiiiiriieriiie ettt sttt s 1
4 Low Cost Mitsubishi PACkML Te@MPIAte ProjECT......ccoouteiiiiiiieeieeitteesteete ettt ettt st sat e st e st e s bt e e bt e s beeebeesabeeeneenane 2
o R [T A - | W o o ={ =Y o T IV oYU PP UUURN 3
N Yot T T o (o = 1 o T AV o =P PP PP PP PP 3
e B 04 o Y=Y i o oY= =Y o (Y] 1TSS URSPI 4
I o 1ol QY €] o] o= W - | < T=] TSSO P PRSP 4
LT A o= Vol 141/ | I = T € o 11T o USSR 4
5.1.1. PACKMLFB STrUCEUrEd Data TYPE..coueierueeeiiieiieeteeette st e sttt e stte ettt e bt e e bt e sabeesabeesabeesaeeesbeeesneesabeeenseesabeesaneesareas 4
5.2 OEM_Template_PackML_LADEIScccuui ittt sttt ettt e b e e bt e st e s st e sabeesaneesareesan naee 6
5.2.1. PackML_Module_Cmd Structured Data Ty P ...uuii ettt ertee sttt see e e st e e s be e sabeeessabeeessabteessanaeas 7
5.3 OEM_Template_PackML_GOT _KEBYS...cccuitiiiiieeeiiieeeeiiee e sttt e s sttt e s sttt e e site e e sbteeessteeesbeeeessteeesassaeesassaeesnsbaeesansaeesansenenn 8
6 PackML Template Project Program Organization UNItS.........cc.eeiiiiiiiiiiieceiiieeeciee e ecieeeesitee e s tee e eeaaeeesstaeeeessaeeesasaeeesreeaans 9
6.1 INIEIAHZATION POU ...uuiiiiiiiiiiieiiesteet ettt ettt ettt ettt e e s b e bt et e e ab e sbe e be e b e s e b e s st e sheenbeeabeemeesaeesae eenbeenseensesbeenseenseans 9
6.1.1. Equipment Module PackML INitialization POUScoiiciieieciie ettt eee e eree e et s e e e st e e e e nne e e eanaeas 9
6.1.2. Unit Machine PackML INitialization POUS........cocuiiiiiiiiiiiiieniee ettt sttt ettt s svee vt s b s e sbeesanee e 10
6.2 UNIt MaChiNg LEVEI POUScoiiiiiiiieiieeetee ettt ettt ettt st s e st e sa et e st e e bt e e s bt e e bt e sabeeeabeesabeeeaseesateesnseebeeens sbeenaneenas 10
6.2.1. UIMLIMIN 1ttt et et e h e bt ettt e eh e e e bt e bt e a b e eateeh e e bt e beeabeeabesheeebe e bt e abeeateebe e e bt ebeeabeeabenheenbeen 11
6.2.2. [ol Y V- 11 T OO PP RRTPPPRTP 11
6.3 EQUIPMENT MOAUIE LEVEI POUS ...ttt ettt e e st e e e et e e e eate e e sbaeeeensbeeaessaeesssaaeeasbaeeeansaeeesasaneassens 11
6.3.1. L0} Do G Y, =T PP P PP PP PPPPPPPP 11
6.3.2. EMIXX_CIMINN_ROUTINE ..eeiiiiiieiiiiiei sttt e e e e e sttt e e e e s st a e e e e e e seasbaeeeaeeessssaeaeeaeessasssanaeeseessanssnnessnsrnnnns 11
6.3.3. oA e = Yol 41/ | @' o YU o S 11
6.4 POU SCAN OO ...ttt ettt ettt ettt et e st e st esab e e sab e e sue e e s ae e e bt e s b ee e bt e s abeeeaseesabeenaseessaeenaee st sabeesabeeenseesabeennneenas 11
7 PLC CPU Parameters @nd SEEHINGES ..c.ueeeuuiiiieiieteitieetee et st sttt st e sttt e sat e s bt e e bt e st e sabeesab e e sabeessteesabeesneeesseeeneesas sanees 12
0 R o WO =Y o I T [= =Y P PPPPP 12
7.2 PLC FIlE PAramMELrS .c.ue ettt ettt ettt et ettt ettt s b e b e bt e e s bt e s bt e bt et e s aeesa e e bt e bt eaeeebe e bt enbeeaseeba eenbeebeeabeenbesaees 13
0 T 1=V Tl I 1 T = £ 13
T4 1/O ASSIGNIMENTS .ueevietiereiieeiteeiteeeteeeeeteeeteeeteeteeeteeeteebeetseetsesbe e beeasesasesbeeseensesasesseeaseeaseesseesseseeaseeas beessestaenteenteensesaeas 14
R S T 11 ol o =3 =T o g Yyl oY Y=Y T Y-SR 14
7.6 Device Label AUtOMAtiC ASSIZNIMENTS....cc.utiiuiiiiieiiet ettt ettt et sat e st e e bt e e s et e s bt e e bt e sabeesabeesabeesabeesaseesareenneeennes 15
8 Example of Adding an Equipment Module to the Template SyStemMcocuiiiiiiiiiiiiiieee e 16
@ MITSUBISHI ELECTRIC Part 5 - i Custom Solutions Center

A% AUTOMATION, INC.

8.1 AddiNg EMO2_INIT POU......cuiiiiiiiiiiiiiiiee e s a e s b st b sb e sa s 16

8.2 AddING EMO2 Program Filecciueiiiiiiieeee ettt sttt ettt sb et e s et e s bt st e st e e s bt e sabeesabeeeaeeessseesneeebeeens sbeeeaneas 20
8.3 Modifying PAaCkIML_IM@in ROULINEcouiiiiiieiieiiee ettt ettt sttt st e bt e be e st esabe e sabeesabeeenseesnneenneeennes 27
9 Example of Adding a Control Module to the Template SYSTEM........cccuviiiiiiiie ettt e 28
10 Issuing PackML Commands in @ Maching Programcoui oo iiiiiiiiiie ettt e e e ettt e e e e e s ebaae e e e e e e e esaaaeeaaaeean 31
10.1 Example 1: Transition from Producing Mode Starting State to EXecute State........ccccevcveeeeciiiecciiee e 31
10.2 Example 2: Transition from Manual Mode Execute State to Stopping Stateccccvvveiiiiieeeciiee e 32
@ MITSUBISHI ELECTRIC Part 5 —ii Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —iii Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

1 Introduction

This document describes the program structure of the Low Cost PackML Implementation Template project, the functions
and implementation details of each program, and how an OEM can tailor the template routines that are included in the
template project to conform to the actual mechanical systems.

This project structure is based on PackML Implementation Guidelines released by the OMAC Users Group and follows the
ISA-88 Make2Pack modularization concept.

2 Low Cost PackML Template System Hardware Architecture
The Low Cost Mitsubishi PackML templates are designed to run on a system with a L02 PLC and a GT-11 HMI.

The system architecture used to create the Low Cost Mitsubishi PackML is shown in the following block diagram. The PLC is
a L02 PLC and the GOT is a GT-11 with the resolution of 320 x 240.

RS-232

Channel 1

L6ADP-R2

Programming Laptop — — ——— GT-11 (320x240)
- LO2CPU

Figure 1 — Low Cost Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and GX Works 2 programs to the LO2CPU.

3 Low Cost Mitsubishi PackML Template Project Structure Overview

The Low Cost Mitsubishi PackML Template Project provides a pre-defined project structure that can be used by an OEM to
implement the control programs for a machine. The project is structured with the hierarchy of Project -> Program Files ->
Tasks - > Program Block or Program Organization Unit (POU).

Figure 2 below shows the overall organization of the PackML Template Project:
e The Project “PackML Implementation” contains many Program Files.

0 Program File “Mainlnit” contains the tasks necessary to initialize the unit machine and all the equipment
modules (designated as EMOO to Emxx) of the unit machine. The number of Equipment Module required
for the Unit Machine depends on the actual mechanical design of the machine and the logical division of
the machine.

e The Low Cost Mitsubishi PackML Template project is designed to have one Task per Program File other than the
main initialization functions.

e The Program File UnitMach contains the Task “Unit_Machine” which contains all the necessary Program Blocks at
the Unit Machine level. The PackML state and mode transitions occur at the Unit Machine level so that the PackML
core function blocks are used only in the Unit_Machine level.

0 MITSUBISHI ELECTRIC Part 5 —Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Each Equipment Module of the Unit Machine has its own Program File and associated task and program blocks.
The number of Program Files required depends on the number of the Equipment Module. Each Equipment Module
can have as many Control Modules as necessary to perform the control functions of the Equipment Module.

0 The Low Cost Mitsubishi PackML Template Project assigns each Equipment Module a main program block
and an Equipment Module PackML Command and Status Summation Program block together with as
many control modules as necessary to control the actual equipment.

Project: PackML Implementation

P P File: UnitMach .
Program File: Maininit Program File: EM0O Program Fle: EMO1 Program File: EMxx

Task: PLC_Init Task: Unit_Machine Task: EMO00 Task: EMO1 Task: EMxx

Program Block (POU)
PackML _UnitMachine_Setup

Task: EMOO_hit
=
EMO00_Init
Program Block (POU) ‘ Program Block (POU) Program Block (P OU)
EM01_CM02_Routine EMxx_CM02_Routine
Task: EMOL_hit

UM_Line Comm EM00_CMO02_Routine
Program Block (POU)
EMO1_Init

Program Block (POU) Program Block (POU) Program Block (POU)
UM_Main EMO1_Main E

xx_Main

Program Block (POU)
EMO0_Mai

Program Block (POU)

Program Block (POU)
PackML_Main

EMO01_CMOL_Routine

Program Block (POU)

EMO00_CMO1_Routine EMxx_CMO01_Routine

‘ Program Block (POU)

Program Block (POU) Program Block (P OU) Program Block (POU)
EMO00_CMnn_Routine EMO1_CMnn_Routine EMxx_CMnn_Routine

Program Block (POU) Program Block (POU) Program Block (POU)

EMDO_PackML_Cmd_Sum EMO1_PackML_Cmd_Sum EMxx_Pack ML_Cmd_Sum

Task: EMxx_Init

Program Block (POU)
EMx_Init

Figure 2 — The Overall Structure of the PackML Template Project

4 Low Cost Mitsubishi PackML Template Project

The actual Low Cost Mitsubishi PackML Template Project contains the structure to support a Unit Machine with two
Equipment Modules and four Control Modules (including one module for PackML command and status summation) within
each Equipment Module.

The structure can be easily expanded to match the actual Unit Machine structure. For example, if the actual machine has
three Equipment Modules instead of two, the OEM can duplicate the complete Program File EMOO and modify the all
names (such as Program File Name, Task Name, Control Module Names, etc.) and labels referenced in the new equipment
module from EMO0O to EMO02. An example is given in Section 8 of this document.

Figure 3 shows the actual project structure in GX Works 2. After all Program Organization Units (POU) are created, they are
registered in the proper program setting areas.

0 MITSUBISHI ELECTRIC Part 5 - Page 2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

+ Parameter
=% Intelligent Function Module

¥ Global Device Comment
+ [y Global Label
—I-fig Program Setting
= ‘]ﬂ Initial Program
= aﬂ MainInit
] g EMO0_Init
{4 EMO0_Init
- fig EMO1_Init
-4 EMO1_Init
= fi PLC_Init
+ ‘ﬁ PackML_UnitMachine_SetUp
= ‘]ﬂ Scan Program
|- UnitMach
= o Unit_Machine
-4 UM_Main
+ ‘ﬁ PackML_Main
+ ﬂ UM_LineComm
|- gl EMOD
- iy EMOO

{4 EMO0_Main
-4 EMOO_CMO1_Routine
+ EM00_CM02_Routine
i+ EMO00_CMO03_Routine
{4 EM00_PackML_Cmd_Sum
=gl EMO1
|- fig EMO1

i+ EMO01_Main
{4} EMO1_CMO1_Routine
+ EMO01_CMO02_Routine
[+ {4 EMO1_CM03_Routine
- EMO01_PackML_Cmd_Sum
‘]ﬂ Standby Program
_w Fixed Scan Program
Jﬂ Mo Execution Type
+- %% pou

+ Device Memory
Device Initial Value [,\\\

Figure 3 — Project Structure of Low Cost PackML Implementation Template

4.1 Initial Program Type

Programs registered as Initial Program Type will only be executed during the first scan of the PLC after it is first
powered up or reset.

e The Initial Program type contains the Program File Mainlnit with three tasks EMOO_Init, EMO1_lInit, PLC_lInit.

e EMOO_Init task contains the POU EMOO_Init which has the actual program routine initializing the Equipment
Module EMOO and local variables associated with the routine.

e EMO1_Init task contains the POU EMO1_Init which has the actual program routine initializing the Equipment
Module EMOO0 and local variables associated with the routine.

e PLC_Init task contains the POU PackML_UnitMachine_Setup which has the actual program routine initializing
the Unit Machine with proper PackML modes and states and the local variables associated with the routines.
4.2 Scan Program Type

Most the program files are registered as Scan Program type that will be executed on every scan of the PLC. The PackML
template contains Program files for a machine with two Equipment Modules.

e The UniMach Program File contains the Unit_Machine Task and there are three POUs: UM_Main,
PackML_Main, and UM_LineComm within the Task.

e The EMOO Program File contains the EMOO Task and there are five POUs: EM0OO_Main, EM0O0_CMO01_Routine,
EMOO_CMO02_Routine, EM00_CMO03_Routine, and EM00_PackML_Cmd_Sum.

e The EMO1 Program File contains the EMO1 Task and there are five POUs: EM01_Main, EM01_CMO01_Routine,
EMO1_CMO02_Routine, EM01_CMO03_Routine, and EM01_PackML_Cmd_Sum.

0 MITSUBISHI ELECTRIC Part 5 - Page 3 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

4.3 Other Program Types
The PackML Template project does not use the Standby, Fixed Scan, and No Execution Program Types.

5 PackML Global Labels

This section contains the detailed descriptions of the global labels used in the PackML Implementation Template project.
There are five groups of Global Labels used in the PackML Template Project. The groups PackTags_Adm,
PackTags_Command, and PackTags_Status are labels related to PackTags that are described in Part 3 of the Users Guide
and will not be described in this document.

5.1 PackML_FB Group

This group contains global labels that are critical to the operation of PackML Core function blocks. The Structured Data
Types PackMLFB is defined to support the core PackML FB operations. Even though the Low Cost PackML template
version does not support as many modes as the full PackML template version, the PackML_FB Group is kept to be
consistent between the two versions.

Variable Label Data Type Description

These are the configuration variables that OEM programs need to define at
which states where mode transitions are allowed for each mode. For
example, PackML_cfgModeTransitions[1, 2] = 1 means at Mode 1
PackML_cfgModeTransitions Bit(0..31,0..17) (“Producing” mode) State 2 (“Stopped”) state, the machine is allow to
switch mode. However, PackML_cfgModeTransitions[2, 2] should also be
set to 1 to allow the mode change from Mode 1 to Mode 2. Otherwise, the
mode change from 1 to 2 is not allowed.

These are the configuration variables that OEM programs need to define at
which states are not enabled for each mode. For example,
PackML_cfgDisableStates Bit(0..31,0..17) PackML_cfgModeTransitions[2, 5] = 1 means at Mode 2 (“Maintenance”
mode) State 5 (“Suspended”) state is not configured as a part of the state
model for Mode 2.

These are the configuration variables that OEM programs need to

PackML_ModeNames String(32)(0..31) configure all the names of the modes in the machine.

sungyo.in) | Toe e 1 nfutn vries vt o641 roams e
TimeRollOverWarning Bit This bit is on when any of the Mode or State timers roll over its limit.
Sta_StateCurrentName String(32) This is a status variable where the name of the current state is stored.
Sta_UnitModeCurrentName String(32) This is a status variable where the name of the current mode is stored.
PackML_ResetAllTimes Bit This bit is used to reset all mode and state timers of the unit machine
PackML_ResetCurrentModeTimes Bit This bit is used to reset all mode timers of the unit machine

These are the labels of PackML commands and status used to interact with
PackML PackMLFB the ModeStateManager function block. The PackMLFB Structured Data
Type is detailed below.

5.1.1. PackMLFB Structured Data Type

This structured data type contains key elements to support the operation of the PackML_ModeStateManager
Function Block. Even though the Low Cost PackML template version does not support Remote Interfaces as does
the full PackML template version, the PackMLFB SDT is kept to be consistent between the two versions to
minimize code modifications.

‘ MITSUBISHI ELECTRIC Part 5 - Page 4 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Variable Label

Data Type

Description

PackML

PackMLFB

The overall PackML label that contains various values and parameters for the
machine states and modes

CmdMode

Double
Word

When OEM machine programs require the machine to be in a certain mode,
this label should be set to the desired value of the mode. For example, when
PackML.CmdMode is set to “1” the machine is intended to be in the
“Producing” mode.

Per PackML specification, the Mode Numbers 1, 2 and 3 are defined as
“Producing”, “Maintenance” and “Manual” respectively. User Define Modes
can be from Model 16 and above. Mode Numbers 4 through 15 are reserved
for future use.

CmdReset

Bit

When OEM machine programs receive a “Reset” command, this bit should
be set by the programs. It should be cleared by the OEM machine programs
when the “Reset” command is no longer valid.

CmdStart

Bit

When OEM machine programs receive a “Start” command, this bit should be
set by the programs. It should be cleared by the OEM machine programs
when the “Start” command is no longer valid.

CmdStop

Bit

When OEM machine programs receive a “Stop” command, this bit should be
set by the programs. It should be cleared by the OEM machine programs
when the “Stop” command is no longer valid.

CmdHold

Bit

When OEM machine programs receive a “Hold” command, this bit should be
set by the programs. It should be cleared by the OEM machine programs
when the “Hold” command is no longer valid.

CmdUnhold

Bit

When OEM machine programs receive a “UnHold” command, this bit should
be set by the programs. It should be cleared by the OEM machine programs
when the “UnHold” command is no longer valid.

CmdSuspend

Bit

When OEM machine programs receive a “Suspend” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “Suspend” command is no longer valid.

CmdUnsuspend

Bit

When OEM machine programs receive a “UnSuspend” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “UnSuspend” command is no longer valid.

CmdAbort

Bit

When OEM machine programs receive a “Abort” command, this bit should
be set by the programs. It should be cleared by the OEM machine programs
when the “Abort” command is no longer valid.

CmdClear

Bit

When OEM machine programs receive a “Clear” command, this bit should be
set by the programs. It should be cleared by the OEM machine programs
when the “Reset” command is no longer valid.

CmdStateComplete

Bit

When OEM machine programs receive a “State Complete” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “State Complete” command is no longer valid.

cfg_RemoteCmdEnable

Bit

When OEM machine programs allow mode and state change commands to
be issued remotely, this bit should be set

Inp_RemoteModeCmd

Double
Word

This label contains the Remote Mode Command value and is the value of the
new mode the machine should transition to. The valid values are 0 — 31.

Inp_RemoteModeCmdChangeRequest

Bit

When OEM machine programs request a remote mode change command,
this bit should be set

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —Page 5 Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Variable Label Data Type | Description

This label contains the Remote State Command value and is the value of the
new state the machine should transition to. The valid State Command values
are defined as follows and others are ignored:

: Reset

: Start
Stop
Hold
UnHold
: Suspend

Double

Inp_RemoteStateCmd Word

: UnSuspend
: Abort

: Clear

W O N O U A WN R

When OEM machine programs request a remote state change command,

Inp_RemoteStateCmdChangeRequest Bit this bit should be set.

StateClearing Bit This is a status bit. When it is set, the machine is in “Clearing” mode.
StateStopped Bit This is a status bit. When it is set, the machine is in “Stopped” mode.
StateStarting Bit This is a status bit. When it is set, the machine is in “Starting” mode.
Stateldle Bit This is a status bit. When it is set, the machine is in “Idle” mode.
StateSuspended Bit This is a status bit. When it is set, the machine is in “Suspended” mode.
StateExecute Bit This is a status bit. When it is set, the machine is in “Execute” mode.
StateStopping Bit This is a status bit. When it is set, the machine is in “Stopping” mode.
StateAborting Bit This is a status bit. When it is set, the machine is in “Aborting” mode.
StateAborted Bit This is a status bit. When it is set, the machine is in “Aborted” mode.
StateHolding Bit This is a status bit. When it is set, the machine is in “Holding” mode.
StateHeld Bit This is a status bit. When it is set, the machine is in “Held” mode.
StateUnHolding Bit This is a status bit. When it is set, the machine is in “UnHolding” mode.
StateSuspending Bit This is a status bit. When it is set, the machine is in “Suspending” mode.
StateUnSuspending Bit This is a status bit. When it is set, the machine is in “UnSuspending” mode.
StateResetting Bit This is a status bit. When it is set, the machine is in “Resetting” mode.
StateCompleting Bit This is a status bit. When it is set, the machine is in “Completing” mode.
StateComplete Bit This is a status bit. When it is set, the machine is in “Complete” mode.

This is a status bit. When it is set, the mode change of the machine is not

ModeChangeNotAllowed Bit
allowed.

Double) .
Sts_StateCurrent Word This label shows the current state of the machine.

This array label shows the current bit of the machine mode. It can be used to
Sts_Modebits[0..31] Bit as test conditions for machine programs. For example, when bit #2 of the
Sts_ModeBits is set, the State Machine is in the Maintenance mode.

Double This label shows the current mode of the machine. The values are as defined

Sts_ModeCurrent Word in the CmdMode label of this table.

5.2 OEM_Template_PackML_Labels

This group contains global labels that are used by Unit Machine and Equipment Modules to operate PackML states and
commands. The Structure Data Type PackM_Module_Cmd is defined to support the operations.

0 MITSUBISHI ELECTRIC Part 5 —Page 6 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Label Data Type Description
The label indicating the PackML commands and status of Equipment Module
EMOO_PackML_Sts PackML_Module_Cmd EMOO (which is the aggregate of all the Control Modules within the Equipment
Module)
The label indicating the PackML commands and status of Equipment Module
EMO1_PackML_Sts PackML_Module_Cmd EMO1 (which is the aggregate of all the Control Modules within the Equipment
Module)
UN PackML Sts PackML Module Cmd The. Ial:.>e| indicating the PackM.L commands and status of the Unit Machine
- - - - (which is the aggregate of all Equipment Modules)
EMOO_CMOO_PackML_Sts PackML_Module_Cmd The label indicating the PackML commands and status of Control Module
EMO00_CMO00
EMO0 CMO1 PackML Sts packML Module Cmd The label indicating the PackML commands and status of Control Module
- - - - - EMO00_CMO01
EMOO_CMO02_PackML_Sts PackML_Module_Cmd The label indicating the PackML commands and status of Control Module
EMO00_CMO02
EMO00_CMO3_PackML_Sts PackML_Module_Cmd The label indicating the PackML commands and status of Control Module
EM00_CMO03
EMO1 CMOO PackML Sts packML Module Cmd The label indicating the PackML commands and status of Control Module
- - - - - EMO01_CMO00
EMO1_CMO1_PackML_Sts PackML_Module_Cmd The label indicating the PackML commands and status of Control Module
EM01_CMO01
EMO1 CMO2 PackML Sts packML Module Cmd The label indicating the PackML commands and status of Control Module
- - - - - EMO01_CMO02
EMO1_CMO3_PackML_Sts PackML_Module_Cmd The label indicating the PackML commands and status of Control Module
EM01_CMO03
RemoteCmd ResetAllTimes Bit The command that comes from external to the machine to reset all the timers
- within the PackML State Machine of this Unit Machine.

5.2.1. PackML_Module_Cmd Structured Data Type

This structured data type is used by each Equipment or Control Module to issue PackML commands as well as
reflects its PackML state status.

Label Data Type Description
. When the bit is set TRUE, the Control Module is issuing a “Reset” command to the
Cmd_Reset Bit)
State Machine.
Sts_Resetting_SC Bit YVhen Resettlng" state operations are compl.eted, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Start” command to the State
Cmd_Start Bit .
Machine.
Sts_Starting_SC Bit YVhen Starting "state operations are comple.ted, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Stop” command to the State
Cmd_Stop Bit .
Machine.
Sts_Stopping_SC Bit YVhen Stoppmg” state operations are complgted, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Hold” command to the State
Cmd_Hold Bit .
Machine.
When “Holding” i | his bit is shoul
Sts_Holding_SC Bit v en “Holding ”state operations are comp eFed, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing an “Unhold” command to the
Cmd_UnHold Bit .
State Machine.
¢ MITSUBISHI ELECTRIC Part 5 —Page 7 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Label Data Type Description
When “UnHolding” rations ar mpl his bit is shoul n
Sts_UnHolding_SC Bit v en “UnHoldi ”g state operations are co p.eted, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Suspend” command to the
Cmd_Suspend Bit .
State Machine.
. . When “Suspending” state operations are completed, this bit is should be set to send a
Sts_Suspending_SC Bit “State Complete” command to the State Machine.
Cmd_UnSuspend Bit When the bit |§ set TRUE, the Control Module is issuing a “UnSuspend” command to
the State Machine.
. . When “UnSuspending” state operations are completed, this bit is should be set to
n ndin, B
Sts_UnSuspending_SC it send a “State Complete” command to the State Machine.
cmd Abort Bit When the |:.llt is set TRUE, the Control Module is issuing an “Abort” command to the
- State Machine.
. . When “Aborting” state operations are completed, this bit is should be set to send a
Abortin B
Sts_Aborting_SC it “State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Clear” command to the
Cmd_Clear Bit .
- State Machine.
. . When “Clearing” state operations are completed, this bit is should be set to send a
learin B
Sts_Clearing_SC it “State Complete” command to the State Machine.
When “E " i I his bit is shoul
Sts_Execute_SC Bit v en “Execute ”state operations are comp eFed, this bit is should be set to send a
State Complete” command to the State Machine.
Sts_Completing_SC Bit Yvhen Completlltlg state operations are com;.)leted, this bit is should be set to send a
State Complete” command to the State Machine.
ONS Bit The internal flag bit that is used for an one-shot Function Block
ModuleActive Bit When this bit is set, it indicates that the control module is active

5.3 OEM_Template PackML_GOT_Keys

This group of global labels is defined in the template to support the User Interface Screens that are parts of the PackML
template. The user interface screens are implemented in the Mitsubishi GT-16 GOT hardware. These screens can be
easily modified and used by the actual OEM machine control project. The descriptions of GOT screens and GT Designer
projects are documented in Part 7 of the Users Guide.

The GOT interface programs of the PackML Template Project are implemented as Control Module CMO01 of Equipment
Module 00 as examples. The user can implement any operator interface routines in other control modules when
appropriate.

Label Data Type Description
GOT_ProdMode Bit Reflecting the status of “Produce Mode” key on the GOT
GOT_MaintMode Bit Reflecting the status of “Maintenance Mode” key on the GOT
GOT_ManualMode Bit Reflecting the status of “Manual Mode” key on the GOT
GOT_User1lMode Bit Reflecting the status of “User Mode 1” key on the GOT
GOT_User2Mode Bit Reflecting the status of “User Mode 2” key on the GOT
GOT_ResetKey Bit Reflecting the status of “Reset Command” key on the GOT
GOT_StartKey Bit Reflecting the status of “Start Command” key on the GOT
GOT_HoldKey Bit Reflecting the status of “Hold Command” key on the GOT
GOT_StopKey Bit Reflecting the status of “Stop Command” key on the GOT
GOT_UnHoldKey Bit Reflecting the status of “UnHold Command” key on the GOT
GOT_AbortKey Bit Reflecting the status of “Abort Command” key on the GOT
¢ MITSUBISHI ELECTRIC Part 5 —Page 8 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

GOT_ClearKey Bit Reflecting the status of “Clear Command” key on the GOT
GOT_SuspendKey Bit Reflecting the status of “Suspend Command” key on the GOT
GOT_UnSuspendKey Bit Reflecting the status of “UnSuspend Command” key on the GOT
GOT_StateCompleteKey Bit Reflecting the status of “State Complete Command” key on the GOT
GOT_ClearAllTimesKey Bit Reflecting the status of “Clear All Timers” key on the GOT
GOT_ClearCurrModeTimeKey Bit Reflecting the status of “Clear Current Mode Timers” key on the GOT
GOT_Screen_Switch Word[Signed] Label that is used to instruct the GOT which screen to display.

6.1 Initialization POU

PackML Template Project Program Organization Units

6.1.1. Equipment Module PackML Initialization POUs

EMOO_Init and EMO1_lInit are two POUs that perform the initialization of PackML related labels only during the
first scan of the PLC. It is important to note that an OEM using this PackML Template Project will need to add the
necessary operation-related initialization code for each equipment module.

The EMO0O_Init and EMO01_Init functions are identical except that labels corresponding to each equipment module
are initialized in their respective POU. Figure 4 shows the Structured Ladder code. The label with the
PackML_Module_Cmd Structured Data Type of each Control Module in the Equipment Module is input to the
Function Block PackML_Cmd_Sts_lInit and all PackML commands and status are initialized to the default values.

EN 0
EMO0_CMO0_FPackML_Sts—— FB_PackML_Cmd_Sts_|fiite==========s====sanzczanazaxd FB_PackML_Crd_Sts_Init r—-EMDD,EMDD,PaDkML,SIS
- EN EMD r
EMO0_CHMOT_PackML_Sts—— FB_PackML_Cmd Gts Inik === =s=ss=mssamzeseaccannaand FB_PackML_Cmd Sts Init (——EMO0_CMOT_PackML_Ste
T — el
EMO0_CM2_PackML_Sts—— FB_PackML_Cmd_Sts_Init

- EN END
EMO0_CHMO3_PackML_Sts—— FB_PackML_Cmd_Sts Initesszs=ssssneennmesonssmnzan FB_PackML_Cmd_Sts_Init r,—EMDD_CMD3_Pa:kML_SIs

PackML_Crd_Sts_Init_1
PackML_Cmd_Sts_lnit

PacktL_Cmd_Sts_Int_2
PackML_Crd_Sts_lnit

PackML_Crd_Sts Init_3
PackML_Cmd_Sts_init |

FE_PackML_Cmd_Sts_Init ,r‘—AEMDD,CMDZPa:kMLSts

PackML_Cmd_Sts_Init_4
PackML_Cmd Ste_Init |

Figure 4 — Equipment Module PackML Initialization

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —Page 9 Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Figure 5 below shows the actual code of the PackML_Cmd_Sts_Init function block. The initialization routine clears
all PackML commands and set the State Complete status for states that require StateComplete flags to transition.

msT | RsT | RST |
EN END EN END EN END
d|—FB_PackML_Crid_Sts_lrit Cnd_Reeset d|—FB_PackML_Crod_Sts_lrit Cind_Start d—FB_PackML_ Tl St InitCrvd Ston
e Eng ‘ N Eno ‘ en' " Eno ‘
d——FB_PackML_Crd_Sts_Irit Crnd_Hold d——FB_PackML_Cd St Irit Crod_UnHold d|—FB_PackML_Cd St i Crod_Suspend
RST | RST | RST |
L EN END EN END EN END
d|—FB_PackML_Crd_Sts_lrit Crnd_UnSuspend d|—FB_PackML_Crnd_Sts_lrit Cnd_bart A FB_PackML_CmedSts_ink Cmel_Clear
e Eno ‘ e Eno ‘ e Eno ‘
d——FB_PackML_Crnd Sts_lrit Sts_Rieseting 50 d——FB_PackML_Cnd_Sts_lnit Sts_Stating SC d|—FE_PackMI_Crul_Sts_Init Ste_Stopping_5C
e Eno ‘ en " Eno ‘ en " Eno ‘
d | FB_PackML_Crd_Sts_lnit Sts_Hokding_SC o FB_PackML_Cd_Sts_lrit Sts_UnHelding_SC d r,_FB_Pa:kML_cmd_sts_lnn.s‘.ts_s‘.uspendmg_sc
SET | SET | SET |
L EN END EN END EN~ END
d——FB_PackML_Crod St lnit Sts_Unuspending 5C d—FB_PackML_Cmd_Sts_lnit Sts_Aboring ST d | FE_PackMI_Cd St Init Ste_Cleaiing 5C
en o Eno ‘ en o Eno ‘
o FB_PackML_Crd_Sts_lnit Sts_Exscute_SC d | FB_PackML_CrnlSts_lnt Sts_Compsling_5C

Figure 5 Function Block: PackML_Cmd_Sts_Init

6.1.2. Unit Machine PackML Initialization POUs
PackML_UnitMachine_SetUp is used to configure PackML modes and states for the Unit Machine and set up initial
alarm configurations and zero event parameters.

The structured ladder programs of this POU included in the PackML Template Project are used to configure the
modes and states for this template system only. This POU needs to be modified by the OEM to properly configure
his Unit Machine to represent the actual modes and states of the machine.

The functions of this POU include:
e Configuring names of all modes available in the Unit Machine,
0 i.e. populating global variable PackML_ModeNames[0..31]
e Configuring names of all states available in the Unit Machine,
0 i.e. populating global variable PackML_StateNames[0..31]
e Defining all states within each mode that mode transitions are allowed,
0 i.e. defining global variable PackML_cfgModeTransitions[0..31, 0..17]
e Defining all states that are not required in each mode,
0 i.e. defining global variable PackML_cfgDisableStates[0..31, 0..17]
e Defining the initial mode and state of the Unit Machine,
0 Inthe Template System, the Unit Machine is set to “Manual Mode” and “Stopped State”
e Selecting the GOT screen to be displayed based on the mode of the Unit Machine,
e Configuring event information for all events in the Unit Machine,
e Configuring event handling parameters for proper operation.
6.2 Unit Machine Level POUs

It is recommended that a user should refer to the actual structured ladder logic code in the Low Cost Mitsubishi
PackML Implementation Template project to get a better understanding of the functions of these POUs.

0 MITSUBISHI ELECTRIC Part 5 - Page 10 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

6.2.1. UM_Main

The purpose of this POU is to control the flow of the other routines at the Unit Machine level. It contains all the
calls to all other unit machine level POUs.

6.2.2. PackML_Main
This POU operates the PackML state machine and its functions include:

e Aggregating PackML commands and status of all equipment modules,

0 If there are more than two equipment modules in the Unit Machine, this part of the template
routine needs to be modified to include commands and status from the additional equipment
modules

e Setting proper PackML command or status based on the aggregated results,

e C(Calling the PackML_ModeStateManager function block to set the PackML state machine in the correct
mode and state and then clearing the command and status

e Calling the PackML_ModeStateTimes function block to accumulate the time in the current mode and state.

6.3 Equipment Module Level POUs

Programs of each Equipment Module are grouped in the Program File EMxx and Task EMxx. In the Template Project,
each equipment module contains the main POU, an event control POU, three control module POU’s, and a PackML
Command Summation POU. For an actual implementation, the OEM can add or subtract the control module POU’s as
appropriate.

6.3.1. EMxx_Main

The purpose of this POU is to control the flow of the other routines at the Equipment Module level. It contains all
the calls to all other equipment module level POUs.

6.3.2. EMxx_CMnn_Routine

This POU contains the logic for Control Module nn of this particular equipment module xx. The OEM should
incorporate the appropriate control logic in this POU to perform the actual control functions. For an actual
implementation, the OEM can add or subtract control module POU’s as appropriate. The names of these POU’s can
also be modified to better reflect the actual control module functions, for example, instead of
EMOO_CMO1_Routine, the POU can be named as Filling_Station_HMI_Interface.

In the Mitsubishi PackML Implementation Template project, EMOO_CMO01_Routine contains the GOT interface
routine for PackML state and mode transitions. It takes the key pressed on the GOT and set or reset the proper
flags to drive the PackML state machine operations. EM0O0_CMO02_Routine and EM01_CMO02_Routine contain the
GOT interface routine for simulating events in the Unit Machine through GOT key presses.

6.3.3. EMxx_PackML_Cmd_Sum

The purpose of this POU is to aggregate all PackML related commands and status from all control modules of this
particular equipment module.

The consolidated command or status will then be used in the PackML_Main POU to set the command and status at

the Unit Machine level.

6.4 POU Scan Order
The scan order of all the POU’s is shown in Figure 6 below:

0 MITSUBISHI ELECTRIC Part 5 - Page 11 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

| First Scan

I only
EMOO_Init }—» - ‘ EMxx }—»

EMDLInit

|
1
PackML_Unit
Machine_Set
Up UM_Main
PackML_Main

L EMO0_Main
EMOO0_CMO1_ EMDO_CMO2._ EMOO_CMnn_ EMO00_PackML
Routine Routine | = =eeecececcoecosees Rouiine _Cmd_Sum

\-» EMO1_Main }7
EMOL_CMOL_ EMD1_CMO2_ EMOL_CMnn_ EMOL_PackML
Rottine Rottne | ==e=esssssccocs. Routine _cmd_Sum

L Other Equipment Module, if any
L EMoMain

EMx_CMOL_ Emoxcemoz || o . EMx CMn_ EMxx_PackML
Routine Routine Routine _cmd_Sum

Figure 6 — Low Cost PackML Implementation Template POU Scan Order

7 PLC CPU Parameters and Settings

This section contains the PLC CPU parameter settings for the PackML Implementation Template project.

7.1 PLC System Parameters

Most the parameters on this screen are default parameters except the Common Pointer number that was set at 2000
so that pointer values greater than 2000 are assigned by the project manually and not automatically assigned.

L Parameter Setting 4]

L Srsiom [PLe e |7ic 5AS |Soct e |Program | | Device | 140 Assigrment | Bultan Exemet Port Setting | Bultn 10 Punction Seting |

towiooed B0 we Come-1000ma) CommonPonter Bo, P [2000 After (2--4088)
Mghsoeed |00 mg f0.00me—100me) -

RUN-PAUSE Contacts Ponts Ocruped by Emoty Sot (*0) | =] pones
piae OR-KFFF) Syatem Internupt Sxtongs
PALEE X -X1FFF)

Laich Data Bacup Operaition Vald Contact

Devicelame | x|
Hmote Reset
™ aow

Outpt Hode 81ETOR to AUN
= Preveus State Inbernupt Program | Fard Scin Program Seting
™ Recaladste(Dutut i 1 scen later} I~ High Speed Executon

AL Compatbiity Setong
I use soecel relay [secel regster from S50 1000

trtebgent Funchion Madue Seting
S vicm Brocemiors Seting

Entemunt Panter Setang (o Extaute the process as the saan [7p =
e prozcess ! ¥
Modhde §yrcbronraton I cpweity serace prnores e s (0, 2ms-- 1000ms)

W Synchvonize inteligent mode’s puise u
'y swrvion srocem: [reesg-otme)

e it whis waiting for conmtant scan setting

{*1)The isems indcaced i gresn are set n MELSORT hanvgatsr. PR et On g

Pt wondow... | Per wdow Preven | Ackrwiedge XY Assgrmet Default o [Ew]| e

Figure 7 — PLC Parameters, PLC System Settings

0 MITSUBISHI ELECTRIC Part 5 - Page 12 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — L02 Release
Part 5: OEM PackML Template Program Structure and Implementation

7.2 PLC File Parameters

Because of the large number of PackTags and labels that are required to support the PackML, a File Register system is
configured to support the these labels.

The File Registers are assigned to “Standard RAM (Drive 3)” by default thus the labels are stored in the Standard RAM
area of the LO2CPU. The capacity of the File is set at the maximum 64K points for L02.

L Parameter Setting

%]

biame |PCSvatem AEFI 10045 |SoarFie |Program |S°C |Device |10 Amigrment | Bultn Edhernet Port Settng | ult-m 140 Funciion Setang |
Fie Regaier Deice inisal vakue
T notused motused
- " Use the sarme fle rarne 3 e program
Correspondng Memery . Cormesponcing Memory =
¥ e the folowng fie ™ wise the folowng fie
Cormespondng Memary - Cortescanding Hesory =
Fie e [PaC. Fie Narme [
Capadty [;_ KPonts
(1K Pt} Fie for Local Device
™ Transfer < bk ™ notLised
Foloningsetngs s sl v eting L e e
mdummdk:mm Camesponding Hemary
“hasgrment to uulm}:wﬂdu
regiater of part of fie regster P s
Comment Fie Used n a Command Fie used for SP.DEVET/S.0EWD Instruction
" NatUsed Het e
™ Use the same fie name a5 the rogram Use the Folowng fie
Carrespondng Memary Comesponding Mesory |
I Lite the folownyg fie P e
o % L — 5 Capacity K Pons
Fie Mame | (20~-30 Poinits)
Pt Window,.. | Print e I - B | cce

7.3 Device Settings

Figure 8 — PLC Parameters, PLC File Settings

The key settings on this screen are the allocated size for ZR registers (64K points) to support automatic allocation of

labels.

L Parameter Satting .3
i |PUC Sywtem |PLCFle |0 R4S |Beot i |Program [5fC Devier [0 Assigrment | Bultm Evhernet Port Settng | fultn 10 Function Setng |
Sy, 0| Sevee | Lk (1) | Lakch 1) Lk () | Lok 0 | ool o st | Lock Devoe £
Trgnit Rekay 3
; 3
M 3
latchRelay | L |30 =
Lk elay =
Acruncstoc S
Unkfpecl | S8 [16] X
Ege sy F
“Step Relay L.
Timer x 1
Retentve Timer | 5T 130 | 1
Counter ® |
: 1] 1
Sk Racetacl W LIS o
bk Speasl £
Index z =
S e e e
. X Laach (2): it is deabled to dear with latch dear., Please do The dear by the program when the remate Ban.
Word Dewce KWor Soan tne b cotmndod by el e et (ke U i Shs
= = xos o o € S e e
Fir firgatrr Fatrratesd frting
Cansaty r K Peints
Foltrnng settng are avalabie
“Devie | Laih (1) | Lakh (1) | Lakh (3) | Laich (2) | Device M. | Drevice M, | when seiect “Lse the folowrg fie”
em Dv Ponts 9.,..{“ (Il N W Geact End | fie regater seting of FLC fie settrg.
i | | | | ﬂ-we a3 of e et
Fie Reguter S e caka
o o [wl x| 1 | of 8 part
| T — I L I_I_-mrw-m
Endevieg Sertrg for 3t Devier
320t Indexing
Gy 2 After (0 - 18)
" Use IT
Pt Window,.. | Print e I - B | cce

Figure 9 — PLC Parameters, Device Settings

’ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 5 —Page 13

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

7.4 1/O Assignments

For the template project, there are only two modules in the system and the I/O assighments are defined by iQ Works
module configurations. For an actual system with additional CPU, 1/0O, or Intelligent I/O modules, the configurations of
these modules should also be done in the iQ Works MELSOFT Navigator and the 1/0 assignments will be reflected here.
The assignments can be overwritten if the option in GX Works 2 is enabled by selecting the checkbox in Tool-> Options

->iQ Works Interaction.

L Parameter Setting .3
e |MC Sywtem |ACHe [Ponas [BeatFie |Program |0 [Devier [Avigrement Jult-m Efernet Port Settrg | Bultn 1)0 Functien Seting
ST -] St setng |
=] [Detaded Seteng |
Agegrang the LD address i ot reCessi'y &8 the TP dots it sutomatially
Leaving this settng blank wil not Cause 8N &rmir 19 0COr.
| e Model Hame: I P Modiel Name Extermon Catée. Sols #
Han -
Ext Banel = s
Fat el =
Extinsed -
Ext Based. =
Ext e = |
ExtBoes >
Ext Doe? -
[} The e clicatend i1 grmes are et 1 MELSOFT Mavgator Read PLE Data
Print Window,.. | Print Wankmw P Assigpment Defmit | chea | B | cancel

Figure 10 — PLC Parameters, I/0 Assignment Settings

7.5 Built In Ethernet Port Setting

The Built-In Ethernet port is configured so that it can be used with the Kepware OPC server to send PackTags data to

external systems.

L Parameter Setting

= |PC Svatem |ACHe |PMCRas |

o [—

1P Address Seting

1P Address
Sutrmt Magk Patiem

Divdouk Pouter I Adcbwas [192 ea

.3

|Bevice |14 Assigrment Bt 'n Edhernet Port Settng [|Buult-n 10 Function Seting

Commerurication Dita Code

* Brary Code

™~ ASCH Code
4 Enaisls srine change (FTR, MC Protocsl)
I Dsabig drmct connecson to MELSOFT

T Do ot reapond 1 search for CPLU (Dultn Esemet pot) on netwodk:

1] The tems incicated in green are set in MELSOFT Navigater.

Print Window,.. | Print Wankmw P

Aumapret Defmit | e

=1

Corcel |

Figure 11 — PLC Parameters, Built-In Ethernet Port Settings

’ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 5 —Page 14

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Built-in Ethernet Port Open Setting

Protocol Open System TCP Connection Ho;t’ftﬁgfm P;ﬁ;g:; DS:‘&"?J:’"

1 _|TCF » [MC Protocal - ~ | 5002
2 [uDP » |MC Protocal - ~ | 5006
3 [JDP = |MELSOFT Connection = -

4 [TCP = |MELSOFT Connection = -

5 |TCP w |MELSOFT Connection ~ w -

& |[TCP w» |MELSOFT Connection - -

7 |TCP w |MELSOFT Connection = -

8 |TCP ~ |MELSOFT Connection = -

5 |TCP - |MELSOFT Connection « -

10 |TCP - |MELSOFT Connection + -

11 _|TCP - |MELSOFT Connection + -
12_|TCF = |MELSOFT Connsction = -

13 |TCF = |MELSOFT Connsction = -

14 |TCP = |MELSOFT Connection = -

15 |TCP = |MELSOFT Connection = -

16 |TCF « |MELSOFT Connection w -

Host station port Mo, destination port No: Please input in HEX.

End | Cancel |

Figure 12 — PLC Parameters, Built-In Ethernet Port Open Settings

7.6 Device Label Automatic Assignments
Use “Tool -> Device/Label Automatic-Assign Setting...” to configure the system where labels should be assigned.

[EF MELSOFT Series GX Works? ... OEM Template ¥3 MulliCPUWackML Implementation - [Global Label Setting Status |

i project Edit Find/Replace Comple Wiew Online Debug Diagnostics | Tool | Window Help
1H_§$E3L|W|§@‘,gﬂﬁ: m | 1IC Memory Card »
=
H=ge J s o S Check Parameter...
P& O =)
3 Qptians. ..
B EEEEI T
Key Custamize. ..
: Navigati 1 x §
i Mavigation) EMO1_Main [F] DeslcajLabel AUEomatic-Assign Stting. . 2, Global Labed Setting Commar|
Proje Data Type
Block Password... P
N 1 [vAR_GLO - uble WwordSigned]
Cf 53 = By 3| M1 2 (VAR BLO Confirm Memory Size... [Signed]
= @ Parametes 3 WARGLOE | Check Inteligent Function Module Parameter »
o PLC Parameter 4 VAR GLO LIz word Signed]
i1y Network Parameter 5 VARGLD Inteligent Function Module Tool ¥ bl twodSigned]
fan Remote Passward £ WAR_GLOBAL ~ [5ta_StateChangelnProcess Bit
(23 Inteligent Function Moduls 7 WAR_GLOBAL ~ |Sla_MachSpeed FLOAT [Double Precision)
4 Global Device Carment 8 VAR GLOBAL + |Gta_CubachSpeed FLOAT [Double Precision|
i) Global Label 9 WAR_GLOBAL ~ | Sta_Matenalnteriocks ouble Ward[Unsigned)/Bit 5 ting]32-5i
. S\meam Setting 10 WAR_GLOBAL = [Sta_Number_Remlnt ouble Word[Signed](0..5]

Figure 13 — Configuring Device Label Automatic Assignments

The range of automatic assignment of “Word” labels is allocated to ZR registers from ZRO to ZR65535. The range of

automatic assignment of “Bit”
values.

labels is allocated to M bits M2000 to M8000. The rest of the ranges are left with default

Device/Label Automatic-Asskgn Setting =
wigrd Range B Range Eonier
VAR Fuange VAR Fuanpe ET N T
fpg rw g "@ M e =
=% 8 =l = a3 = |
U] s 65535 2000 o B =
¢ ¢
| = | =
I ' 1 I
Trmers Conrters
VAR Range VAR Range
o I i | 7 dw oo
b o (=4 = [= 12 v w2 =
¢ s ¢
| 1 i | | 1
=1 =1 =] =] =1 =1
Lateh{1]: Tt s prersadbe: b clear wsing the Laich clear key.
Liitch{2)s Clmanng usng the laich cear key i deabied, Mease do the dear with the remate o I Caneed |
operston, progr

Figure 14 — Label Automatic Assignment Settings

‘ MITSUBISHI ELECTRIC
A7 AUTOMATION, INC.

Part 5 Page 15 Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

8 Example of Adding an Equipment Module to the Template System

This section documents the steps that an OEM will take to add the POU’s of an additional equipment module (e.g. EM02) in
the PackML Implementation Template Project.

8.1 Adding EM02_Init POU
e Right Click on EMO1_Init Task in the “Initial Program ->MainlInit” tree and select copy.

= flm Program Setting ~
= () Initial Program
=8 MainInit
- EMOO_Init
+
- PLC_T [add Hew Data...
{4 Pa
= () Scan Prog “5 S
=8 Unithach Delete L@
=g Unit! Rename
- it —
| ﬂpa Sort »
- () L
- Open Tack Setting
= emon Open Uncompiled Data
=) MO0
? Erl S| Property...

-] EMO0_CMOL_Routine

(+/-{(#) EMDO_CMDZ_Routine

-4 EMOD_CM03_Routine

() EMO0_EwerkConitrol

=I-{(%) EMD0_PackML_Crmd_Sum
] Program
5 Local Label

= eMn1
=I-fim EMO1 ! a

e Right click on MainlInit Task and select Paste.

== Program Setting
=1 ({H] Initial Program

¥l fim £ [F addMewData...
+

% (@ peste \
B Delete 23
2 Jﬂ;ﬁaﬂu ol rename

S 6l | OpenUncompled Data

0By property. .

e I
R Data Security Jetting...
{8 OF_EventContral

=&l Emog

= fg EMOD
+/{4) EMOD_Msin
- {4) EMO0_CMD1_Routine
+) (4] EMOD_CHD2_Routine
{4 EMOD_CMO3_Routine
{4 EMO0_EventControl
=1 (%) EMDO_PackML_Crd_Sum
%) Program
£ Local Label
= gl emoy
= g EMD1

e A pop-up window will be displayed and allow the user to enter a new name “EMO02_lInit” for the new Task. The
EMO2_lInit Task is then added to the tree.

(@ Parameter
g Inteligent Function Module
4% Global Device Comment:
=) Global Label
A Admin
42 Command
) EMO0CMDLGOT
AR PackML_Labels

AR Status
= fig Program Setting
. = () Initial Program
pus TR Tam ‘y}ﬁﬂ Msinlnit
Copy Source Dets Nome) g EMOO_Init
[Eoi 5w + o
" I + fim PLC_Init
Lok Mames AFtes Paste & EMOZ_Init
|m—..‘_rm1 Cancel =1 ({4} Scan Program
= Urittach
=) Linit_Machine
- () UM_Main

-] PackbL_Main
() UM_LineComm
/(%) UM_EventCortral
= emoo
= e EMOO

/() EMDO_Main
an

0 MITSUBISHI ELECTRIC Part 5 - Page 16 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Right Click on EMO01_Init POU in the “Initial Program ->MainlInit -> EM01_Init” tree and select copy.

e Right Click on the EM02_Init Task and select Paste to copy the POU

[Fea B2 8

- (@] Parameter ~
ﬁ Inkeligerk Function Macule
&% clobal Device Comment:

= () Global Label

&2 Admin
& Command
& EmMoncM1GoT
&2 PackML_Labels
& Status
= i Program Setting
=l ({4} tnitial Program

=M Maindrit
) EMO0_Init
=I i EMO1_Init
) Pra Reqister Program
& LU\.‘ ~a
 f PLC Init |59 S0PY N
18 EMO2_Init Delete]
=1 () Sean Program
= gl UritMach Renamwe |
=I-fiag Unit_Machi Qpen Uncompiled Data
() UM_M I —
+ () PackhL Gy Property...
{4 UM _Lin Block Password. .
([UM_E reror ~
TRy

Jﬁ Project
L.“ User Library

@ Connection Destination

[F2a s T 2) M
+ (g4 Parameter ~
:g Inteligent Function Module
4} clobal Device Commert
= & Global Label
& admin
&2 Command
) EMO0CMO1GOT
&} PackiL_Labels
& status
=) Program Setting
=1 (M) Initial Program
=1 gl Mainlrit
+I- g EMO0_Init
=1 o EMO1_Init
=1 (%) EMO1_Tnit
] Program
g5 Local Label
+ i PLC_Init

2
=1 scan pri (| add Mew Data...
= i!ﬁ Ut ol copy

8 a o —
Delete 3

*
&
3
o Rename

=4l 1
Open Task Setting |

Project |
i e Open Uncompiled Data
L,“‘ User Librar| B Froperty. ..

!5 Connection Destination

‘ MITSUBISHI ELECTRIC

A7 AUTOMATION, INC.

Part 5—Page 17

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e A pop-up window will be displayed and allow the user to enter a new name “EMO02_Init” for the new program
block or POU. The EMO02_Init program block is then added to the tree.

AW WP,
+ Parameter A

=3 Inteligent Function Module
Y Global Device Comment
= {&) Global Label

g, Adrmin

* Command
EMODCMD1GOT

E2) PackML_Labels

&2 status

= §ba Program Setting

= () initial Program
Data Type: Program Block, =) 8 Mainlnit

Copy Source Dats Name +/ g EMOO_Init
I fig EMO1_Init
|Em01 _nie = {8 EMO1_Init

) oo
Data Name After Paste 5 Local Label
|Ew:2_1mt Cancel /- fi PLC_Init
=188 EMO2_Init
)
) Program
g5 Local Label
= () scan Program
=1 @ UnitMach
=/ b Unit_Machine

+ ‘% UM_Mainy =
e T

lemjut

_L," User Library

g:wu:ummum

Data Paste

e The red circle X across the EM02_Init task indicates that there are errors associated with this new Task that
was created. Right click on the EM02_Init Task and select “Open Task Setting”.

CFCa @ B o) | B
&2 Admin A
&2 Command i
& EMO0CMO1GOT
&R PackiL_Labels
€2 Status
= f Program Setting
=1 (M) Initial Program
=1 g8 Mainlrit
i EMD0_Init
= g EMDI_Init
+ (%) EMD1_Init

+1- i PLC_Init
=3

w4 £ (T add New Dats...
= () Scan Prograr Cupyi
e
=gl emn | Paste
a2 EMDE Delete

4 Rename

Sork 3
g Ti
% Open Task Setting

: @ | o= Uncompiled Data

(% £ G| Property...
= g Mol
() Standby Program
—

i Project
L,,*‘ User Library
“g Connection Destination

U<

0 MITSUBISHI ELECTRIC Part 5 - Page 18 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e The Task setting shows that both EM01_Init and EMO02_Init are under this task since the EMO02_Init task was
copied from the EMO1_Init Task which has program file EMO1_lInit.

Progiam Mame I Comment
1 [EMOT_Irit
2 EMOZ_Init

4

e Simply delete EMO1_Init from the Task Setting of EMO02_Init Task and the red circle with the x should
disappear from EMO02_Init Task

e —
Froject Program Name Commert
Canbalm T —

C R A all s
Coeenawed
B EMOOCMOLGOT | ;
B PackiL_Labeks &
L St T
~i S Frogran Saing | 8
= (] Iread Program g -
i EMOD_In ::I -
= fim EMOL_Ink 12 -
* g EMOL_Ink 1]
g EMOE ik :;]
¥ () EMO_Tne |
& wnmgnm | :g
il Uratach | 1w
o | 19
= &g 0 | »
= () EMO0_Mar 5
W Program n
Al Local Label n
* (M EMO0_CMO1_Rostine o
+ U EM00_CMI2_Rioating Pt
+ 8 EM00_CMOD_Rioating: s
* (8 EMO0_EvenaCantrol 2 [}
* (M EMO0_PackiL_Cind_Sum & = =1
i e = -
lj Project [[]
Ell —

— User Library g

S cmoonvesnee :

e Double Click on the “Program” in the new EMO02_Init Program Block and it will display the logic which is the
exact copy of the logic in EMO1_Init POU.

| Mavigation B X itk et 100 | ity Lol bl et EME)_Co01 .. |) E1000_Cras ot (1] rora... | £100_pcion,_Coml_sum [P v | s Tk setting 3101 | g Tk Smteng 3z _e) 602,_irst [PRG] Prograen [~ <[4 ©

e PockML_Cind
r a2 PackHl_Cond

- . (1]
-~ EHIN_Che bl P PackML_Cmed Sts i ssesssassess
FackHL_{

{_Sae_lnt_R
PackML_Cmed_ 51y It

EH
FR_PackHL_Cred St lrienens

PuackML_Cid S It 7

- PackML_Cind Sts Ik =
FB_PockML_Cord Sts_k===senmnxmmmsmsansssenena=oFl PockM_Crel Gty ek

™
FI_PockML_Cimd Sty Ink=scssssescassassensssansas,

S Lk s

I

0 MITSUBISHI ELECTRIC Part 5 - Page 19 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Create new global variables EM02_CMO00_PackML_Sts, EM02_CMO01_PackML_Sts, EM02_CMO02_PackML_Sts,

and EMO02_CMO03_PackML_Sts with structured data type “PackML_Module_Cmd” in the Group
OEM_Template_PackML_Labels.
Class Label Name Data Type Constant Device Address
1 [VAR_GLOBAL « |EM00_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
2 |VAR_GLOBAL » |EMI1_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
3 |\VAR_GLOBAL » |UN_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
4 |VAR_GLOBAL ~ |EM00_CMOD_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
5 [VAR_GLOBAL ~ |EM00_CMOT_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
& [VAR_GLOBAL - |EM00_CMO2_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
7 |VAR_GLOBAL - |EM00_CMO3_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
g2 [VAR_GLOBAL w |EM01_CMOD_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
9 |VAR_GLOBAL = |EMO1_CMO1_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
10 |VAR_GLOBAL « |EMD1_CMOZ_PackML_Sts PackML_Module_Cmd Detail Setting Detail Setting
11 |VAR_GLOBAL w |EMD1_CM03_PackML_Sis PackML_Module_Cmd Detail Setting Detail Setting
12 |VAR_GLOBAL - Bit
- BAL » |EM0Z_CMOD_PackML_5ts Faw Detail Setting Detail Setting
14 |VAR_GLOBAL « |EM02_CMO1_PackML_Sts FackML_MDduIe_Cmd\ Detail Setting Detail Setting
15 |VAR_GLOBAL ~ |EMI2_CM0O2_PackML_Sts PackML_Module_Cmd) Detail Setting Detail Setting
WVAR_GLOBAL ~ |EM02_CMO3_PackML_Sts PackML_Module_Cmd / Detail Setting Detail Setting
Te—

e Edit the EMO02_Init logic to use the proper labels and correct instances of the initialization function block.

g B 2%

PackML_Cmd_Ste_Init_3
PackML_Cmd_Sts_Init ‘

+ (g Parameter
g Inteligent Function Module
¥ Global Device Comment
=1 (& Global Label
2 admin
A% Command
A EMDOCMOLGOT
) PackivL_Labels
A Status
=I g Program Setting
=) Initial Program
= Mainlnit
4] iz EMOO_Init
= i EMO1_Tnit
=1 ({4 EMoL_Init
%] Program
£ Local Label
¥ i PLC_Init
=i EMOZ_Init
=1 ([EMD2_Init
] Program
£ Local Label
=} Scan Pragram
=1 gl UnitMach
=) b Unit_Machine
iR

EN
EM02_CHO0_PackML_Sts —— FB_PackML_Cmd Ste Inik
- EN
EMO2_CMOT_PackbL_Sts —— FB_PackML_Cmd_Sts_lnit
- [N
EM02_CHO2_PackML_Sts —— FB_PackML_Cmd Ste_Inik

1 |
EMO2_CMO3_Packbl_Sts— FB_PackML_Cmd_Sts_lnit

PackidL_Cmd_Sts_Init_10
PackML_Cmd_Sts_lnit |

PackML_Crid_Sts_lnit_11
PackML_Cmd_Sts_Init ‘

PackiL_Cmd_Sts_Init_12
PackML_Crd_Sts_lnit |

END r

FB_PackbiL_Cmd Ste_Init ——EM02_CHO0_Packhl_Sts
END ’—‘

FB_PackML_Crnd_Sts_lnit ——EMO2_CHOT_FackhL Ste
END r

FB_PackbiL_Cmd Ste_Init ——FEM02_CHMO2_Packhl_Sts

END ’—‘
FB_PackML_Crnd_Sts_lnit ——EMO2_CHO3_FackhL Ste

8.2 Adding EMO02 Program File

e Right Click on the Scan Program in the project tree and select “Add New Data...”

+ (@5 Parameter ~
g Inteligent Function Madule
&% clobal Device Comment:
+ () Global Label
=) Program Setting
+ (M) Initial Program
5
gl EV00 Open Uncompled Data 5
+ gl EMO1 - -
() Standby Prof By Property...
M} Fixed Scan Fragram
(M) Mo Execution Type
=-#4 Pou
= {3 Frogram
1 {(#) EMO0_EwentConitrol
+ (¥ EMO0_CMD1_Routine
+ () EMOD_CHD2_Rotine
() EMOD_CIM03_Routine
[} EMOO_Tnit
+1 (%) EMO0_Main
=) EMOD_PackML_Cmd_Sum
) Program
g5 Local Label
+ ([#) EMD1_EventContral
() EMO1_CMO1_Routine
+ [(#) EMO1_CMD2_Routine
+1 (%) EMD1_CHMD3_RoLtine v

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —Page 20

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e A pop-up window will appear and enter the new name of the Program File “EM02”and the new program file
will be added to the project tree.

- Parameter
g Inteligent Function Module:
¥ clobal Device Comment
(42 Global Label

=) Program Setting
Hew Data]
=1-({H] Scan Program
Data Type - Unittach
[Frogram File =l cancel i gﬂ Emg?
e

Data Name E

(1) Standby Program
| Emoal {H] Fixed Scan Program

- (H] Mo Execution Type
=% pou

=T Program

1 (%) EM00_EventContral

= {#) EMO0_CMD1_Routine
(¥} EM00_CMO2_Rroutine
1 [{#) EMOD_CMO3_Routine
{4 EMO0_Inic
({4 EM00_Main
=) EM00_PackML_Cmd_Sum
®) Program
g5 Local Label
(%) EMO1_EventCortrol
() EMO1_CMO1_Routine
1 ¥ EMO1_CMDZ_Routine

=]

e Right Click on the EMO1 Task and select “Copy”.

CF.ca oo B 2 0
+ Parameter
g Inteligent Function Madule
4% Global Device Comment
+ () Global Label
=i Program Setting
(] Initial Program
=1 () Scan Program

+ i UritMach
- EMon
= gl EMO1
=i 3 Dopy
R
i Delete
% Rename
+ - @ |
poc| (=
() Standoy Fr Open Task Setting
(M} Fixed Scan s
+ (] Mo Executiol Open Uncompiled Data
= 4 pou

Property..
£ gDEWE Memary S| Puoperty.

Device Initial Yalue

Jﬁ Project
L.“ User Library

@ Connection Destination

0 MITSUBISHI ELECTRIC Part 5 - Page 21 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Right Click on the EM02 Program File and select “Paste”.

O G2)
+ (5 Parameter
g Inteligent Function Madule
&% clobal Device Comment:
+- (% Global Label
= Pragram Setting
+ () Initial Program
=1 ({4} scan Program
- Uritach
il EmoD
= gl emo1
= fi EMO1
* () EMO1_Main
+ () EMO1_CMD1_Routine
+ (%) EMD1_CHD2_Routine
() EMO1_CM03_Routine
() EMO1_EwentControl
+ () EMO1_PackML_Cmd_Sum

i
(80 Stend [F| 2o new Dat...

() Fixed
Paste
+ (] Mo Ex e 3
+-% pou Delete
(@) Device M R
Device Ini - |
Open Uncompiled Data
Gy Property...
Data Sgouriy Setting...

)& Project
L.“‘ User Library

g Connection Destination

e A pop-up window will appear and that new task name EMO02 can be entered.

Raas b2
+ &5 Parameter
g Inteligent Function Module
Y Global Device Comment
(&%) Global Label
=1 S Program Setting
(M) Iritial Program
=) () Scan Program
+ 8 UnitMach

Data Paste
= i Emo1

Data Type: Task
Copy Source Data Name

[Emor

Register Progran
Gy Copy
Delete

Open Uncompiec

Data Name After Paste
Bz Cencel = &
= i Emoz
& emoz
() standby Program
(] Fixed Scan Program
) () Mo Execution Type
4 pou
(@ Device Memory
Device Initial Valus

Approrea
L—. User Ubeary
gmm

i3

0 MITSUBISHI ELECTRIC Part 5 - Page 22 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Select all POU’s under the task EM01 and click “Copy”

Proje
e R i WEN P |
- (@] Parameter
ﬁ Inkeligerk Function Macule
&% clobal Device Comment:
+ () Global Label
=) Program Setting
+ (M) Initial Program
=1 ({4} scan Program
G UritMach
-l oD
=1 gl Emo1

Register Prograr

@ meaeE A
=1 g ez Copy
13 Emoz
() Standby Program Delete
({1 Fixed Scan Program Open Uncompile

({H) Mo Execution Type
=% pou

¥ Device Memary
Device Initial Yalue

Jﬁ Praject

L.‘.‘ User Library

!! Connection Destination

e Right Click on the EMO02 Task and select “Paste”.

[F2a s T 2) M
+ (g4 Parameter
3 Inteligent Function Module
4} clobal Device Commert
[Global Label
= i Program Setting
- (H) Initial Program
=1} Sean Program
gl UritMach
+ gl EMOD
=g emot
= EMDL
+ () EMO1_Main
() EM01_CMO1_Routine
(¥ EMO1_CMD2_Routine
(¥} EMO1_CM03_Routine
) EMD1_EventContral
() EMO1_PackiL_Cmd_sum

= gl Emo2
() standby pre (| Add New Data...
(M) Fixed Scan f—
#1 (1) Mo Executio =
« 79 FOU [e N |
+ Device Memary Delete by
Device Initial ¥a
Rename
Open Task Setting sl
Project
i w2 Open Uncompied Data ||
L,“‘ User Library | By Froperty...

g Connection Destination

‘ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 5 —Page 23

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

Pop-Up windows will appear to allow the user to enter the new names of the POUs. Repeat the process until

°
’
all POU’s are renamed.
Projec
CB2a e Co 21 8
Data Paste + Parameter ~
- (3 Intelligent Function Maduls
4% Global Device Comment
DataT ;P Block
i # (4 lobal Label
Copy Source Data Hame - i3 Program Sefting
|EMD1,Mam + () Initial Program
=(H) scan Program
Data Mame After Paste * g Unitach
|EMUZ_MamI Cancel 7 @ Evoo
= gl eMo1
=I- fig EMOL
{4 EMD1_Main
(%) EMO1_CMO1_Routine
Data Paste] #1 () EMD1_CMO2_Rodtine
| (%) EMD1_CMOZ_Routine
Data Type: Program Block () EMO1_EventControl
Copy Source Data Name +1-() EMD1_PackML_Cmd_Sum
=gl EMO2
‘ EMD1_CMOL_Raoutine
Data Name After Pasts
| EMoz_ch01_Routine] Cancel
{H} Standby Program 3
W,
Jﬁ Project
L_“‘ User Library
{! Connection Destination
»
e The red circle X across the EMO02 task indicates that there are errors associated with this new Task that was

created. Right click on the EMO02 Task and select “Open Task Setting”.

[FEa = T @) M
* (5 Parameter ~
g Inteligent Function Mocule
&% clobal Device Comment:
+- () Global Label
= 8 Program Setting
+ (] Initial Program
=(H) Scan Program
0 Uritach
gl oD
= gl eMD1
=l fi EMOL
() EMO1_Main
+ (¥} EMD1_CMD1_Routine
() EMD1_CHD2_Rovtine
| {(#) EMO1_CMD3_Routine
({4 EMO1_EventControl
([EMD1_PackML_Cmd_Sum

=i EMo2
N @uﬂ [P add Mew Data...
8 | 2| copy
L}
() Delete
R Rename
)
Sort R
(M) Standty P 2
Er R,
[Open Task Setting =
M Open Uncompied Data o
L‘i‘ User Library | By Praperty...

!! Connection Destination

0 MITSUBISHI ELECTRIC Part 5 - Page 24 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e The Task setting shows that both EM01 POU’s and EM02 POU’s are under this task since the EM02 task was
copied from the EMO1 Task which has all program files from EMO01

Program Name Comment
1 [EMOT_Main

2 |EMOT_CMOT_Rouine
3 EMOT_CMOZ Routine
4 [EMOT_CMO3_Rouine
5 |EMOT_EventContol
£ |EMOT_PackML_Cmd_Sum
7 [EMOZ_Main

8 |EMDZ CMOI_Routine
9 [EMDZ CMOZ Flouine
10 |EMOZ_CMO3_Foutine
11 [EMOZ_EventContrel
12 [EMOZ_PackML_Cmd_Sum
13

14

15

16

17

18

19

0

2

22

2

4

#5

3

Fij

28

]

0

El

2

3

34

S

4

e Simply delete EMO1 POU’s from the Task Setting of EMO02 Task and the red circle with the x should disappear
from EMO2 Task

Program Name: Comment
5 1 [EMOZ_ Main
Panfopf 2 EM0Z_CMOT_Fodine
a g Farameter 3 [EMDZ_CMO2 Routine
=3 Inteligent Function Module 4 W02 CMO3 Foutine
¥ Global Device Corment 5 |EM0Z_EventContral
-y Global Label 6 EMO2_PackML_Crd_Sum
=l fim Program Setting 7
/-l Tnitial Program]
=-{lf) Scan Pragram 3
-0 Unitiach 0
- EMo0 1
-l EMD1 12
=i EMDZ 12
=g EMOZ 12
- () EMOZ_Main 15
- {(#) EMDZ_CHO1_Routine 16
e) EMDZ_CHD2_Rowtine 17
[EM0Z_CMO3_Routine 18
- ({8 EMO2_EventCortrol 19
() EMOZ_PackML_Cmd_Sum 20
() standby Pragram 2
{H) Fixed Scan Program 72
-] Mo Exscution Type 23
w1 POU 2
{8 Device Memory 25
g Device Initial Value %
Fid
2
A
Jﬁ Project 30
a
L,.“ User Library 2
3
!i Connection Destination 34
ki

0 MITSUBISHI ELECTRIC Part 5 - Page 25 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Double Click on the “Program” in the new EM02_Main Program Block and it will display the logic which is the
exact copy of the logic in EMO1_Main POU. Create new global labels associating with EM02 and then edit the
labels in the program to use the new labels. Modify the pointers to point to proper subroutines also. For
example, the first subroutine call is using pointer P2040.

- u SET
T G 2| &0 P :nm'kna EN EHS

=t Prograe St ~

v (I i Prosyn -
Sean Program F CALL SET

t EN ENO EN ENO

L] | d

" CALL SET
- @ e . N END BN ENO
= PA42— | v

CALL SET
N END I END
P2l — | d

CALL SET
EN END EX Eﬂod

Starctsy Prosy
Feced Seo Pripaa
+

N Exenution Type |

i FEND.
s raruN . EM_ ENOD -
+ (B3 Sructured Deta Trpts
) Local Dwvce Conment

s o v

e For example, double click the EM02_CMO01_Routine and ensure the label block pointer value is revised to the
proper pointer label, i.e. P2041. Repeat the steps for all subroutines. OEMs need to add the necessary control

code in this POU.

T [FEROEH MR e
(AT WENE
= # Program Setting ~

+-{H) Initial Program
= (M) scan Pragram 2 RET
& @ UnitMach 1 EN ENO
= gl EMop
/- EMOD
1 @l EMo1
= gl EMoz
-8 EMOZ
{8 EMo2_Main
=-{() EM02_CMD1_Routine
% Program
g5 Local Label
() EM02_CMDZ_Routine
(8] EMO2_CMD3_Routine
-] EMOZ_Eveni:Control
ﬁ EMO2_PackML_Crnd_Sum Ladder Block
(] standby Program
(] Fixed Scan Program Label: P24t

. o\ ﬁu"m Execution Type Tl]W
3o
6 Structured Data Types
g Local Device Comment
+ .@ Device Memary 3
Jﬁ Project
L,l‘ User Library
g Connection Destination
2[4
0 MITSUBISHI ELECTRIC Part 5 —Page 26 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Edit the EM02_PackML_Cmd_Sum routine to replace all labels from references to EM01 to EMO02.

8.3 Modifying PackML_Main Routine
The PackML commands and status from the newly added module EMO02 need to be added to the PackML_Main routine
so that they can be used to determine the transitions of the state machine properly.

Following is a portion of the PackML_Main routine showing the aggregation of “Reset” command signals and
“Resetting” state “State Complete” signals for EM0O and EMO1.

EMUD_PackMIJ__S‘ts.Cmd_H ezet EMO0_Pack LJ_Stls.Modu\eActwe UN_PackMLISth_.‘Cmd_H eset

4 4 If Fieset Command is set in one of the EM's and the EM is active, then
the Urit Machine Feset Command should be set

EMULPackMIJ_,S‘ts.CmiH eset EMO1_Packh LIStls.Modu\aAct\va
s)

EMUD?PackML,SJts.S‘ts,HeseltinlSC EMULPackML,SJls.Slts,HesetliHQSC UN,PackMLﬁSlESjtijiasetting‘SC

k I

. It an EM iz nat active then there i no need to check the Resetting
EMUU—PaCkMLJ—/Sl‘S'MUdUIEAC“VE EMm—PaCkMLJ—/SlIS'MUd“‘EACWE State Complete status for that EM. Fesetting SC needs to be set for all
s s

the active EMs befare the Unit Machine Resetting 5C can be set. At
least one of the EM should be active in an Unit Machine,

These rungs of logic need to be modified to include the signals from the newly added equipment module EMO02. The
resulting rungs are shown below:

0 MITSUBISHI ELECTRIC Part 5 - Page 27 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

EMO0_PackML_Sts.Crd_Reset EMO0_PackML_Sts.Modulebictive UM_PackML_5ts.Crad_Reset
I I 3
Ik It > It Reset Command iz set in one of the EM's and the EM iz active, then ‘

EMOT_PackhL_Sts Cnd_Resst EMOT_PackML_Sts ModuisActive the Ui Mactine fiesst Command should be <et
I ¥ [N

k I

EM UZ_F'ackMIJ__S‘Is.Cmd_Hesst EM EIZ_PackMLJ_SIIS.M oduledictive
I s

EMO0_PackML_Sts Sts_Resetting SC EMO1_PackML_Sts Sts_Resetting SC EMOZ_PackML_Sts Sts_Resetting SC UN_PackML_Sts Sts_Resetting_SC
It I I ¥ (9]
EMUU_F'ackMLJ_SIf.MDdu\&Aclwe ‘ EMU'I_FackMLJ_/St‘s toduledctive ‘ EMUZ_FackMLJ_Et‘s Moduledctive 1f an EM i not active then there is no nesd to check the Resatiing
s s s

State Complete status for that EM. Resetting 5C needs to be set for all
the active EMs before the Unit Machine Resetting 5C can be set. At
least one of the EM should be active in an Unit Machine.

Similar modifications need to be done for all commands and status signals in PackML_Main for all new equipment
modules added to the system.

9 Example of Adding a Control Module to the Template System

This section documents the steps that an OEM will take to add the POU’s of an additional control module (e.g. CM04) in a
particular equipment module (e.g. EMO01) in the PackML Implementation Template Project.

e Right click on one of the CM routine and select “Copy”.

Proje
[FEa = T @) M
* (5 Parameter
g Inteligent Function Mocule
&% clobal Device Comment:
+- () Global Label
= 8 Program Setting
+ (] Initial Program
=({H) Scan Program
8 Uritach
+ gl EMon
= gl eMO1
=l fig EMOL
() EMO1_Main
+ (¥ EMD1_CMD1_Routine
() EMD1_CMO2_Routine

]
(% EMO1_Ew Register Program
() EMO1_Paq
i) standbﬁogram Ha Copy [
() Fixed Scan Program Delste
+ (] Mo Execution Type Rename
4 pou i
+ g Device Memary Open Uncarmpled Data
Device Initial Walue O E—
Gy Property..

Black Passward. ..

Jﬁ Praject
L,.“ User Library

g Connection Destination

0 MITSUBISHI ELECTRIC Part 5 - Page 28 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Right Click on the Task EMO01 and select “Paste”.

Foado) m
- Parameter
g Intelligent Function Module
¥ Global Device Comment
- Global Label
=) Programn Setting

(K] Inkial Program
=] 5can Program

- UnitMach
-2 EMOO
= EMD1
o
-aEE—————
=) E [T add New Data...
& -]
© g 5a Copy
) £ Paste
= {8 Delete
B
] standby Fro Rename
{H] Fized Scan ot b
- (H] Mo Executio _
27 poll Open Task Setting
g Device Memary Open Uncompiled Data
Device Initial Val ol ittt
Gy Property...

‘% Project
L'il User Library

!! Connection Destination

e A pop-up window will appear for the user to enter a new POU name and the new POU is added to the Task.

‘Project
CF @ G 2] M
+-{85 Parameter

g Intelligent Function Module

!_} Global Device Comment
+- 5 Global Label
—|- g Program Setting

+ ME Initial Program

Data Paste | =1} Scan Program
et + aﬁ UritMach
Data Type: Program Block + il EMOD
=gl EMo1
Copy Source Data Name = fiag EMO1
|EMDI_CM03_R0utine () EMD1_Main

+-) EM01_CMO1_Rautine

+-{{#} EMO1_CMOZ_Routine

Data Mame After Paste +1-(4} EMO1_CMO3_Routine

|EM017CM047Routine| Cancel +1-{(#) EM01_EventControl
-8 EMO1_PackML_Cmd_Sum
+| ({4 EMO1_CMO4_Routine

dﬂ Standby Program

,‘]ﬂ Fixed Scan Program

{H) Mo Execution Type

+- T pOU

+| =1 Device Memory
{#™ Device Initial Yalue

.% Project
L.‘.‘ User Library

g Connection Destination

¥

0 MITSUBISHI ELECTRIC Part 5 - Page 29 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

e Double Click the new program routine to open the editing window.

Insert DEM EMOT CMO3 PLT rungs here

P2033:
g = o ‘ﬂ L& EMO1 CMO
(& Parameter 3 Routine
=3 Inteligent Function Madule
4} Global Device Comment 2 RET

-4 Global Label EN_ENO [~
= fig Program Setting
#1-({lf) Initial Program
=1} Scan Program
+ @ UnitMach
+ i Emon
= Emon
= fim EMOL
() EMO1_Main
/() EMO1_CMO1_Routine
() EMO1_CMDZ_Routine
- EMO1_CMD3_Routine
-{ %) EMO1_EvenkControl
-} EMO1_PackiL_Cmd_Sum
=-{%) EMO1_CMO4_Routine
) Program
i Local Label
{1} Standby Frogram
{{l Fixed Scan Program
A0 b Fonmibion T

e Make the necessary modification to the Jump label and Title. The OEM needs to add the appropriate control
code in this POU.

Inzent OEM EMOT CMO4 PLC rungs here

2 RET
+——EN_END}-

Ladder Block

Label;

Title: EMOL CMO4 Routine

e In the EM01_Main POU, add the new “Call to Subroutine” instruction to call the new control module
EMO01_CMO04_Routine.

T T :
CALL SET
o B 2) | B g ‘ o B ;_ el e EMOI CHOD Rouine andian ot C00 s
= Po00— p | d [—EM01_CAMDD0_PackhL_Sts Modeditive
Parameter
3 Irteligent Function Madule:
43 clobal Gevice Commen caL | ser | Callthe EMO1 CMOT Routine, and tum on the CMOT is
=18 Giobal Labe! EN END EN END 5
&'é adnin P20 —p | 4 —EMO1_CMIT_PackiL_Sts Moslsbictve active bl The GO Intettscs Rouine
A% Command
2 EMDOCHoLGOT
%, PackML_Labels e s ‘ e e ‘F Cal\l thi EMm CMO2 Routing and turm on the CMOZ s
2 status P2032— p d —EMO1_CMO2_PackML_Sts Modulsctive el
S Program Setting
(] Tnitial Program
=] Scan Program
= g UnitMach - EALIENU \ - SET o \ Cal the EM01 CMO3 Rautine and tum on the CMOZ is
& gi EMOO PoE— p | a1 EMO1_CMO3_ PackML_ St Modusetive Eetizelil
= EMOL
= e EMOL
= Evotprin caL | ser | Callthe EMO1 CMO3 Routine and tun on the CHOZ is
&) Program EN END ‘ BN END - e
) Local Label P03 — p d [—EMO1_CHDA_PackhL_Sts Modeditive
) EMD1_CMO01_Routing
= EMO1_CMOZ_Raoutine
S “ﬁ EMO1_CMO3_Routine & E‘LENU ‘ & GETEND L ;:a\l thelEMm g‘alckML l[:wmrg;ind Summation Routing and
(4] EMO1_EventContral PoIs— p | df—EM01_PackhL_Sts ModuleActive i en e mostie s sethe bl
{3} EMO1_PackiL_Crd_Sum
=I-{#) EMO1_CMO4_Routine
Program
8 Frogan | FEND |
N EWD
% Project
L. user Library
o
¢ MITSUBISHI ELECTRIC Part 5 - Page 30 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

10 Issuing PackML Commands in a Machine Program

The purpose of this section is to show how PackML commands can be issued in OEM’s machine control code to cause the
Unit Machine State diagram to transition from the current state to the desired next state.

The key steps that need to be programmed regarding a state transition are:
e Reset the command(s) that caused the transition from the previous state to the current state.
e Issue the command that will cause the transition from the current state to the desired next state.
e Clear all commands that may cause the transition away from the desired next state.

The following two examples illustrate the use of these steps to ensure proper state transition.

10.1 Example 1: Transition from Producing Mode Starting State to Execute State

UNHOLDING 7 J-Un-Hold — HOLDING

[— 1

vy [
STARTING ——5C —pf EXECUTE S COMPLETING
R s —
sc S
| ¥

RESETTING Un-Susp:

I

Resat Stop

i i sTOPPED | 4—SC-|: STOPPING li CLEARING S/ g Cloar—] i

Figure 15 — Producing Mode State Model

T
Abort
Y

sc ABORTING

If the Unit Machine is in the Producing Mode, Starting state as shown in the State Model in Figure 15, when the
execution of the machine control logic of Equipment Module 00 and Control Module 02 in the Starting State is
completed, the State Machine should proceed to the “Execute State” when the Starting State “State Complete” (SC)
command is issued.

In order to cause this transition of states, the following logic can be used:

J SEN RST
- EN ENO EN ENO —
d —EMO0_CMDZ_PackML_Sts Sts_Starting_SC d (——EMO0_CMO2_PackML_Sts. Sts_Fxecute_SC
RST RST
“EN ENO [~ EN ENO
d (——EM00_CMO2_PackML_Sts.Cmd_Start d ——EMO0_ '_PackML_Sts.Cmd_H
RST
S EN ENO
d (—EMO0_L _PackML_Ste.Cmd_Susper

Figure 16 — Sample Ladder Logic for Handling PackML Commands

e The command EMO0O_CMO02_PackML_Sts.Sts_Starting_SC is set to command the transition from the Starting
State to the Execute State.

e The command EMO00_CMO02_PackML_Sts.Cmd_Start should be reset. The Start command must have been
issued earlier in the machine control logic to cause the machine to transition to the Starting state. Thus it is a
good practice to reset the command when leaving the Starting State to avoid any error by leaving the Start

0 MITSUBISHI ELECTRIC Part 5 - Page 31 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 5: OEM PackML Template Program Structure and Implementation

10.2

Command active. The Start Command can actually be reset earlier in the Starting State machine control logic if
the user chooses to.

Referring to the State Model in Figure 15, the Execute State can potentially transition to one of the “Holding”,
“Completing” and “Suspending” states depending on the PackML command that will be issued when the
Execute State logic is complete. It is important that the commands causing the State Model to transition from
the Execute State be reset so that the State Model will be transitioned to and remain in the Execute State
properly. Thus, referring to Figure 16, the following commands EM00_CMO02_PackML_Sts.Sts_Execute_SC,
EMO0O_CMO02_PackML_Sts.Cmd_Hold, and EM00_CMO02_PackML_Sts.Cmd_Suspend should be reset.

Example 2: Transition from Manual Mode Execute State to Stopping State

INFEED FILLER

STARTING

FORMER SEALER

SC
|

OUTFEED

/RESETTING

EXECUTE

Reset Stop

#STOPPING li

Figure 17 — Manual Mode State Model

| STOPPED CLEARING A Cioar —4 ' J\'n'oRrEr)';i; 5

Assuming the Unit Machine is in the Manual Mode, Execute state as shown in the State Model Figure 17. During the
execution of the Execute State machine control logic in Equipment Module 00 and Control Module 02, it is necessary
for the machine to go into “Stop State”, the following logic can be used:

J SET | RsT |
- EN ENO —~ ~EN ENO r
d ——EMO0_CM02_PackML_Sts Cmd_Stop d——EMDD_ | _Ste.5ts_Stopping S
RST
S EN ENO
d ——EMOD_ | _Sts Sts_Starting_S

Figure 18 — Sample Ladder Logic for Handling PackML Commands

The command EM00_CMO02_PackML_Sts.Sts_Stopping_SC is set to command the transition from the Execute
State to Stopping State.

The command EMO0_CMO02_PackML_Sts.Sts_Starting_SC should be reset assuming the machine is in the
Execute State from the Starting State. It is a good practice to reset the command when leaving the Execute
State to avoid any error by leaving the Sts_Starting_SC Command active.

Referring to the State Model Figure 17, the Stopping State will transition to the Stopped State when the
execution in the Stopping State is complete.

0 Itis important to reset the EM0O0_CMO02_PackML_Sts.Sts_Stopping_SC command to ensure the logic
of Stopping State is executed properly.

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —Page 32

Custom Solutions Center

MITSUBISHI ELECTRIC
AN AUTOMATION, INC.

Custom Solutions Center

Users Guide

Low Cost OEM PackML Templates

Version LC-1.0

Content

INEFOTUCTION 1. ettt ettt s bt e s a b e s a b e e sa b e e bt e e ste e b ee e st e sabeesabeesabeesabaees saabeeabaeenseesabeesnbaesabeesabeenaseens
Low Cost PackML Template SyStem ArChitECIUIEcccuviii ettt e e e ee e e s aae e e e sat e e e e neseessnseeeesnsaeeeannes

GOT Communication Channel CoNfIGUIAtioN.........ocuiiiiiiiienie ettt et et ae e st esareesabeesaneens

A W N P

SAMIPIE SCIEENS ..ttt ettt ettt s e ae e e be e et e s bt e e bt e s a bt e easeesat e e sae e e be e e st e sabeeeaseesabeesabeesab e £eeabee e st e nabeeebeesateesareenats
4.1 PACKIVIL IMOTE SCIEENS ...ttt ettt ettt sttt et e s bt e s bt e s bt e e b et e bt e sa b et sabeesabeesabeeeaseesabe e sbeeabbeeseeea sembeesaneennneenns
4.1.1. [oTe [UTol T gY=d\Y, Fo Yo (SR Yol £ Y=Y o FO PP
4.1.2. MaINTENANCE MOAE SCIEEN.....euiiieitieteet ettt sttt ettt e st et e st e sbe e s bt et e ea b e sbeesbe e besabesabesbeenbeensesnee aes
4.1.3. Y T T LY Fo T [T o <1< o TP PP P U PRRTR
4.2 TIMEI VAlIUE SCIEENS ...ttt sttt ettt sttt et st b e bt et e ae e s b e e st et e s aa e s b e e bt e resanesbeesb e e et emeesmeenne eenreenneeneenreenneans
4.2.1. Producing Mode Timer ValUE SCIEENco.uiiiieiii ettt ettt et b e et e st e s b e sat e e sane e bt e e saeesnnees
4.2.2. Maintenance Mode TiMer ValU@ SCIrEENo..oi ittt sttt e st sa e s e e e sae e e saneeneas

4.2.3. Manual Mode TimMEr ValUB SCrEENcccoeiiiiiiiiii ettt ettt ettt e s ba b s bababsbasabeserarararens

0 MITSUBISHI ELECTRIC Part 6 —i Custom Solutions Center
A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

LO2 Release V1.0

March 31, 2011

Initial release of PackML OEM Implementation Templates for LO2 PLC

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 6 — i Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 6: GOT Screens

1 Introduction

This document describes the example screens that are used with the Mitsubishi PackML Implementation Template project.
Many of the screens and screen elements can be used by OEMs on actual operator screens for the machine. The GT
Designer 3 project for the example screens is a part of the Mitsubishi PackML Implementation Template package.

The use of iQ Works system labels is described in Part 2 of the Mitsubishi PackML Implementation Template Users Guide.

2 Low Cost PackML Template System Architecture

The Low Cost PackML templates are designed to run on a system with an LO2 PLC and a GT-11 HMI. The system architecture
used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a LO2 PLC and the GOT is a GT-11
with the resolution of 320 x 240.

RS-232

Channel 1

L6ADP-R2

Programming Laptop — — ——1— GT-11 (320x240)
- L02CPU

Figure 1 — Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and GX Works 2 programs to the LO2CPU.

3 GOT Communication Channel Configuration

The GOT in the Template system uses the USB port to communicate with the programming laptop and RS232 channel to
communicate with the PLC.

When using iQ Works to define the system architecture, the communication channel between GOT and the PLC should have
already been set up.

In Figure 2 below, all parameters shown with the green background are defined in iQ Works and transferred over to the GT
Designer 3.

0 MITSUBISHI ELECTRIC Part 6~ Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release

Part 6: GOT Screens

W GT Designer3 C:\

chMLTe...\PackML Template GT11 Label Lite - [Contredler Setting]

Dprowct Edt Searcheclecs Wew Soeen Common Fgue Dbmct Iods Communcaton ndow Heb

AN L T e b BIRRERESE os8 & G4l

-3 El@.n-o- R |- o [oR] 2= @ B
i System 2x T A (] Tl %[Tm... %[5 gl x|
U‘fﬂo"qe":ll W Cortroler Setirg
Lz h“r:n.rnr':‘d St 9 iy
= q.:-—nsw.-:r::‘yw..n» = ‘“l';:‘]w_ Dislec Samng | Herwbachres 1)
® Larguage Swichig ’
Diskog v Conteces Typg (1)
KeyWindow -
& Syaterm Infomation: Ltk
Socury
[Stamp Logs el
CF 607 Sehg Dvckad Sl
= Combroder Seltwsy
@ CHIMELSECL Lo e v‘f’
& gt Netweik/Duplax Sating Tianssssion SotedBPS] M50
&, 0 Redndart Bemy{Tmes] [}
=g F‘;Md Unit Settirg Tirreout Time(5ec] 3
. o
& FCDasTramk] Delay Trvelms] 0
= BEID
4§ ¥ Commurscstion Seltng
T¥Froiect | [svsiem [Ereen
; — (1] The st i sted in green s cet in MELSOFT Nawigater

Figure 2 — Communication Channel 1 Configuration

And then select the I/F Communication Setting to verify all parameters.

WF Communication Setting

Figure 3 — Verifying Channel 1 Communication Settings

One should ensure the configurations are correct. If for whatever reasons the parameters do not match with the actual
system configuration, one can select Tools -> Options -> iQ Works Interaction tab as shown in Figure 4 and check the box to
enable editing of parameters set in MELSOFT Navigator. However, the best practice is to make the necessary changes in the
Navigator and “reflect” the parameters using the methods described in Part 2 of the Users Guide.

/ Dperation | Vigw | Default Setting ¥/l Works Interaction

Set the tems related to i W orks Interaction

Parameter

[“JE nable an ediling of parameters sst in MELSOFT Navigator

[Note] - There will be & mismatch in the selting of epstem configuration if parameters
set in MELSOFT Havigator are edited. Use the inleraction function with MELSOFT
Mavigatar after the mismatch is resolved by using the reflection function 23 wel as
veification function.
Parameters cannot be edted when the parameter reflection
funcion is execuled in MELSOFT Navigator
This setiing cannot be changed when the setting window of contiollers s displayed

Figure 4 — Option to Modify Parameters Set in iQ Works

’ MITSUBISHI ELECTRIC

AV AUTOMATION, INC.

Part 6 — Page 2

Custom Solutions Center

Mitsubishi PackML Implementation Templates — LO2 Release
Part 6: GOT Screens

4 Sample Screens

Six sample screens, consists of three Mode Screens and three Timer Value screens, are included in the Low Cost Template
project.

Each screen of PackML Mode Screens displays the state machine of the mode. Keys are provided for the user to change
modes and issue PackML commands. The state machine will display the transition of the states and highlight the state the
state machine is in. Each screen of Timer Value screens displays the accumulated and current time values for the mode and
states. Keys are provided for the user to reset timers. The details of this screen are described in this section.

Elements on these screens can be copied and used on other screens created by OEMs.
4.1 PackML Mode Screens
The PackML Mode Screens are used to demonstrate the PackML state and mode transition functions.
The functions of these screens are documented below:

e This screen of a particular mode displays the state diagram of the mode and the active state is highlighted and
shown in Current Machine State display box.

e The Current Machine Mode is shown in the “Current Machine Mode” display box

e The Mode keys at the bottom of the screen allows the Unit Machine to change Mode and the screen of the
new mode will be displayed. If the Unit Machine is at a state that mode change is not allowed, the “Not
Allowed” lamp will be lit.

e The PackML Command Keys simulate commands to the State Machine and will cause state transition

4.1.1. Producing Mode Screen

Current hiode
AREGLEFGH
Current Siate
AREGLEFGH

Figure 5 — Producing Mode Screen

0 MITSUBISHI ELECTRIC Part 6 - Page 3 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 6: GOT Screens

4.1.2. Maintenance Mode Screen

Current Piode

AECDEFGH

ctte Current Stete

At Compl. ABCDEFGH

Figure 6 — Maintenance Mode Screen

4.1.3. Manual Mode Screen
The Manual Mode Screen has an additional key “Go To Event Test Screen” which allows the Event Simulation
screen to be displayed and events being generated.

Current Mde
ABCDEFEH

Current st
AREGLEFGH

Figure 7 — Manual Mode Screen

0 MITSUBISHI ELECTRIC Part 6 - Page 4 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 6: GOT Screens

4.2 Timer Value Screens

4.2.1. Producing Mode Timer Value Screen

Time Since ﬂ.rtlrg SuEpending
Last Peset (5] = T e z = T

123456

starti Abartad
cur 123456 ur 455
Cummubtice L] 2351 L Gl

Mode= Time 5] Cearing
123456 = 4CE d

Current
Maod= Time= (5]
123456

cin

o

Pri

FezEt Feset A1
Figure 8 — Producing Mode Timer Value Screen

4.2.2. Maintenance Mode Timer Value Screen

Time Since ﬂ. rtlng
Last Reset [5]

123456

starti ﬂ.l:-nrned
= I' 123 B
Curmmubthe=
Mad= Time= (=] Cearing
123455 = 455 cur 4EE

Currant
Mode Time (5]
1258456

2rc

F=int=in

Fezet Fezet all
Current Times
Tricde Time

Figure 9 — Maintenance Mode Timer Value Screen

0 MITSUBISHI ELECTRIC Part 6~ Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — LO2 Release
Part 6: GOT Screens

4.2.3. Manual Mode Timer Value Screen

Time Since
Last Peset (5] = Jek
123456
starti

Cur 123458
Curmmubtie L] b
Mode= Time 5]
123456 g

Current
Maod= Time= (5]
123456

Figure 10 — Manual Mode Timer Value Screen

0 MITSUBISHI ELECTRIC Part 6 — Page 6 Custom Solutions Center
A% AUTOMATION, INC.

	Mitsuibishi PackML Implementation Users Guide L02- Cover
	Mitsuibishi PackML Implementation Users Guide - Part 1 Overview L02Release V1.0
	1 Introduction
	2 Low Cost PackML Template System Architecture
	3 Mitsubishi PackML Template Key Components
	4 Mitsubishi PackML Template Program Structure
	5 High Level OEM Implementation Steps
	6 Parts of the PackML Implementation Users Guide

	Mitsuibishi PackML Implementation Users Guide - Part 2 Navigator L02Release V1.0
	1 Introduction
	2 MELSOFT Navigator Configuration
	2.1 Module Configuration
	2.2 Network Configuration
	2.3 Adding Programs to PLC and GOT
	2.3.1. Creating New PLC Program
	2.3.2. Adding Existing Programs
	2.3.3. Allocating Programs

	3 Registering Labels in the System Label Database
	4 Using the System Labels in the GOT Program
	4.1 Establish Route Information
	4.2 Setting Up System Labels for GOT Use
	4.3 Using the System Labels in GOT

	5 Summary

	Mitsubishi PackML Implementation Users Guide - Part 3 PackTags L02Release V1.0
	1 Introduction
	2 Key PackTags Design Considerations
	3 PackTags Implementation Considerations
	4 iQ System Configuration
	4.1 PLC File
	4.2 Device
	4.3 Built-in Ethernet Port Setting

	5 GX Works2 Label Implementation
	5.1 Command Labels – PackTags_Command
	5.2 Status Labels – PackTags_Status
	5.3 Administrative Labels

	6 Kepware Server Configuration
	6.1 Adding a Channel of Communication
	6.2 Adding Devices

	7 Kepware Tags Implementation
	7.1 Creating the Tags

	Mitsubishi PackML Implementation Users Guide - Part 4 PackML FB L02Release V1.0
	1 Introduction
	2 Overview of PackML State and Mode Core Function Blocks
	3 Function Block: PackML_ModeStateManager
	3.1 Description
	3.2 Function Block Operations
	3.3 Function Block Local Variables

	4 Function Block: PackML_ModeStateTimes
	4.1 Description
	4.2 Timer_32Bit_Sec Function Block
	4.3 Function Block Operations
	4.4 Function Block Local Variables

	5 Example Use of the PackML Function Blocks
	5.1 Initialization Example
	5.2 Example of Calling Function Blocks

	Mitsubishi PackML Implementation Users Guide - Part 5 Template Project L02Release V1.0
	1 Introduction
	2 Low Cost PackML Template System Hardware Architecture
	3 Low Cost Mitsubishi PackML Template Project Structure Overview
	4 Low Cost Mitsubishi PackML Template Project
	4.1 Initial Program Type
	4.2 Scan Program Type
	4.3 Other Program Types

	5 PackML Global Labels
	5.1 PackML_FB Group
	5.1.1. PackMLFB Structured Data Type

	5.2 OEM_Template_PackML_Labels
	5.2.1. PackML_Module_Cmd Structured Data Type

	5.3 OEM_Template_PackML_GOT_Keys

	6 PackML Template Project Program Organization Units
	6.1 Initialization POU
	6.1.1. Equipment Module PackML Initialization POUs
	6.1.2. Unit Machine PackML Initialization POUs

	6.2 Unit Machine Level POUs
	6.2.1. UM_Main
	6.2.2. PackML_Main

	6.3 Equipment Module Level POUs
	6.3.1. EMxx_Main
	6.3.2. EMxx_CMnn_Routine
	6.3.3. EMxx_PackML_Cmd_Sum

	6.4 POU Scan Order

	7 PLC CPU Parameters and Settings
	7.1 PLC System Parameters
	7.2 PLC File Parameters
	7.3 Device Settings
	7.4 I/O Assignments
	7.5 Built In Ethernet Port Setting
	7.6 Device Label Automatic Assignments

	8 Example of Adding an Equipment Module to the Template System
	8.1 Adding EM02_Init POU
	8.2 Adding EM02 Program File
	8.3 Modifying PackML_Main Routine

	9 Example of Adding a Control Module to the Template System
	10 Issuing PackML Commands in a Machine Program
	10.1 Example 1: Transition from Producing Mode Starting State to Execute State
	10.2 Example 2: Transition from Manual Mode Execute State to Stopping State

	Mitsuibishi PackML Implementation Users Guide - Part 6 GOT L02Release V1.0
	1 Introduction
	2 Low Cost PackML Template System Architecture
	3 GOT Communication Channel Configuration
	4 Sample Screens
	4.1 PackML Mode Screens
	4.1.1. Producing Mode Screen
	4.1.2. Maintenance Mode Screen
	4.1.3. Manual Mode Screen

	4.2 Timer Value Screens
	4.2.1. Producing Mode Timer Value Screen
	4.2.2. Maintenance Mode Timer Value Screen
	4.2.3. Manual Mode Timer Value Screen

